980 resultados para Proteïnes supressores de tumors
Resumo:
In a case-control study in three Australian states that included 794 women with epithelial ovarian cancer and 853 community controls for whom we had adequate contraceptive and reproductive histories, Re examined the effects of oral contraceptive use after controlling for estimated number of ovulatory cycles. Other covariates included in the multiple logistic regression analysis were parity, smoking, and history of pelvic surgery. The protective effect of duration of oral contraceptive use appeared to be multiplicative, with a 7% decrease in relative risk per year [95% confidence interval (CI) = 4-9%], persisting beyond 15 years of exposure. Use for up to 1 year may have a greater effect than predicted (odds ratio = 0.57; 95% CI = 0.40-0.82), whereas use before the first pregnancy may be additionally beneficial (odds ratio = 0.95; 95% CI = 0.87-1.03, adjusted for overall duration of use). Better control for ovulatory life might attenuate these estimates somewhat. There was little evidence of waning protection with time since last exposure or of extra benefit with early commencement of oral contraceptive use. We found no convincing evidence of effect modification in any factor examined or differences in effect among the three main histologic cancer types or between borderline and malignant tumors. Oral contraceptives may act by both suppressing ovulation and altering the tumor-promoting milieu.
Resumo:
The present paper reviews research in the area of the broad-spectrum chemotherapeutic agent cisplatin (cis-diamminedichloro-platinum II) and examines the implications for clinical neuropsychology arising from the neurological disruption associated with cisplatin-based therapy. The paper begins with a brief review of cisplatin treatment in terms other than survival alone, and examines the side-effects and the potential central nervous system (CNS) dysfunction in terms of neurological symptoms and concomitant implications for neuropsychology. Two main implications for clinical neuropsychology arising from cisplatin therapy are identified. First, cisplatin therapy impacts upon the psychological well-being of the patient, particularly during and in the months following treatment. It is suggested that during this time, a primary role for neuropsychology is to focus upon the monitoring and the active enhancement of the patient's social, psychological and spiritual resources. Second, with regard to neurocognitive changes, the review suggests that (1) neurocognitive assessment may not yield stable results within 8 months following treatment and (2) while perceptual, memory, attentional and executive dysfunction may be predicted following cisplatin treatment, little systematic research has been carried out to investigate such a possibility. Future research might profitably address this issue and also specifically examine the effects of low dosage cisplatin-based therapy and the effects of recently developed neuroprotective agents. Finally, there is some evidence to suggest that women may be more susceptible to neurotoxicity during cisplatin therapy, but no gender-related cognitive effects are reported in the cisplatin literature. Future research could usefully investigate gender differences in association with cisplatin chemotherapy. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.
Resumo:
Perforin (pfp) and interferon-gamma (IFN-gamma) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-gamma were significantly less proficient than pfp- or IFN-gamma -deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-gamma -deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-gamma appeared to play an early role in protection from metastasis, Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1(+) T cells, Herein, both pfp and IFN-gamma played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells, Further analysis demonstrated that IFN-gamma, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-gamma, and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice, (C) 2001 by The American Society of Hematology.
Resumo:
Pheochromocytomas are tumors of the adrenal medulla originating in the chromaffin cells derived from the neural crest. Ten % of these tumors are associated with the familial cancer syndromes multiple endocrine neoplasia type 2, von Hippel-Lindau disease (VHL), and rarely, neurofibromatosis type 1, in which germ-line mutations have been identified in RET, VHL, and NF1, respectively. In both the sporadic and familial forms of pheochromocytoma, allelic loss at 1p, 3p, 17p, and 22q has been reported, yet the molecular pathogenesis of these tumors is largely unknown. Allelic loss at chromosome 1p has also been reported in other endocrine tumors, such as medullary thyroid cancer and tumors of the parathyroid gland, as well as in tumors of neural crest origin including neuroblastoma and malignant melanoma, In this study, we performed fine structure mapping of deletions at chromosome 1p in familial and sporadic pheochromocytomas to identify discrete regions likely housing tumor suppressor genes involved in the development of these tumors. Ten microsatellite markers spanning a region of similar to 70 cM (Ipter to 1p34.3) were used to screen 20 pheochromocytomas from 19 unrelated patients for loss of heterozygosity (LOH). LOH was detected at five or more loci in 8 of 13 (61%)sporadic samples and at five or more loci in four of five (80%) tumor samples from patients with multiple endocrine neoplasia type 2. No LOH at 1p was detected in pheochromocytomas from two VHL patients, Analysis of the combined sporadic and familial tumor data suggested three possible regions of common somatic loss, designated as PCI (D1S243 to D1S244), PC2 (D1S228 to D1S507), and PC3 (D1S507 toward the centromere). We propose that chromosome Ip may be the site of at least three putative tumor suppressor loci involved in the tumorigenesis of pheochromocytomas. At least one of these loci, PC2 spanning an interval of <3.8 cM, is Likely to have a broader role in the development of endocrine malignancies.
Resumo:
IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.
Resumo:
Transfer of the herpes simplex virus type I thymidine kinase (HSV-TK) gene into tumor cells using virus-based vectors in conjunction with ganciclovir (GCV) exposure provides a potential gene therapy strategy for the treatment of cancer. Effective gene therapy,, depends on the efficient transfer and specific targeting of therapeutic genes and their protein products to target cells. The purpose of this study was to investigate the anti-tumor effect of Lentivirus-mediated and MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy in animal models. Mouse models were generated with intraperitoneal injection of human epithelial ovarian cancer cells 3AO, which are MUC1-positive. HTV-1-based lentiviral vectors carrying VP22-TK or scFv-VP22-TK were prepared. The animals were injected intraperitoneally with lentivirus containing scFv-VP22-TK, VP22-TK followed by GCV treatment. Combined treatment of lentivirus-expressed scFv-VP22-TK or VP22-TK with GCV inhibited the proliferation and prolonged survival times compared with the control vector. The survival time of animals treated with scFv-VP22-TK/GCV was significantly longer than that of animals treated with VP22-TK/GCV (p = 0.006). Conclusion: Our results suggest that MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy can efficiently inhibit ovarian tumor growth and increase survival in a nude mouse model of ovarian carcinoma. These data support the development of this method for human clinical trials.
Resumo:
Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and A play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.
Resumo:
EDD (E3 isolated by differential display), located at chromosome 8q22.3, is the human orthologue of the Drosophila melanogaster tumour suppressor gene 'hyperplastic discs' and encodes a HECT domain E3 ubiquitin protein-ligase. To investigate the possible involvement of EDD in human cancer, several cancers from diverse tissue sites were analysed for allelic gain or loss (allelic imbalance, AI) at the EDD locus using an EDD-specific microsatellite, CEDD, and other polymorphic microsatellites mapped in the vicinity of the 8q22.3 locus. Of 143 cancers studied, 38 had AI at CEDD (42% of 90 informative cases). In 14 of these cases, discrete regions of imbalance encompassing 8q22.3 were present, while the remainder had more extensive 8q aberrations. AI of CEDD was most frequent in ovarian cancer (22/47 informative cases, 47%), particularly in the serous subtype (16/22, 73%), but was rare in benign and borderline ovarian tumours. AI was also common in breast cancer (31%), hepatocellular carcinoma (46%), squamous cell carcinoma of the tongue (50%) and metastatic melanoma (18%). AI is likely to represent amplification of the EDD gene locus rather than loss of heterozygosity, as quantitative RT-PCR and immunohistochemistry showed that EDD mRNA and protein are frequently overexpressed in breast and ovarian cancers, while among breast cancer cell lines EDD overexpression and increased gene copy number were correlated. These results demonstrate that AI at the EDD locus is common in a diversity of carcinomas and that the EDD gene is frequently overexpressed in breast and ovarian cancer, implying a potential role in cancer progression.
Resumo:
Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.
Resumo:
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm(2) and power density of 45 mW/cm(2). Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
Context: Previous studies have shown that double RET mutations may be associated with unusual multiple endocrine neoplasia type 2 (MEN 2) phenotypes. Objective: Our objective was to report the clinical features of patients harboring a previously unreported double mutation of the RET gene and to characterize this mutation in vitro. Patients: Sixteen patients from four unrelated families and harboring the C634Y/Y791F double RET germline mutation were included in the study. Results: Large pheochromocytomas measuring 6.0-14 cm and weighing upto 640 g were identified in the four index cases. Three of the four tumors were bilateral. High penetrance of pheochromocytoma was also seen in the C634Y/Y791F-mutation-positive relatives (seven of nine, 77.7%). Of these, two cases had bilateral tumors, one presented with multifocal tumors, two cases had large tumors (>5 cm), and one case, which was diagnosed with a large (5.5 x 4.5 x 4.0 cm) pheochromocytoma, reported early onset of symptoms of the disease (14 yr old). The overall penetrance of pheochromocytoma was 84.6% (11 of 13). Development of medullary thyroid carcinoma in our patients seemed similar to that observed in patients with codon 634 mutations. Haplotype analysis demonstrated that the mutation did not arise from a common ancestor. In vitro studies showed the double C634Y/Y791F RET receptor was significantly more phosphorylated than either activated wild-type receptor or single C634Y and Y791F RET mutants. Conclusions: Our data suggest that the natural history of the novel C634Y/Y791F double mutation carries a codon 634-like pattern of medullary thyroid carcinoma development, is associated with increased susceptibility to unusually large bilateral pheochromocytomas, and is likely more biologically active than each individual mutation. (J Clin Endocrinol Metab 95: 1318-1327, 2010)
Resumo:
Background Retroperitoneal liposarcomas occur more frequently between the fifth and seventh decades. Fortunately, these tumors are exceedingly rare in pregnancy, but when they occur, their management becomes even more challenging. Case A pregnant patient with a retroperitoneal liposarcoma was treated by complete surgical resection at 13 weeks of gestation. The patient gave birth at 37 weeks of gestation to a normal newborn and remains free of disease after a year. Conclusions Individualized approach should be taken according to gestational phase, tumor kinetics and overall patient`s condition. Any disturbance to materno-fetal equilibrium, should be an indication for urgent therapeutic approach.