999 resultados para Propriedades eletricas
Resumo:
This work aims to study the structural characteristics of silica gels obtained from the acid hydrolysis of tetraethoxysilane (TEOS) in water solutions with different concentrations of sodium dodecyl sulfate (SDS). The structural characteristics were studied in stages ranging from the wet gel to the dry stages of the gels (aerogels and xerogels). Aerogels were obtained by ambient pressure drying (APD) after silylation process using trimethylchlorosilane (TMCS) as silylating agent. Xerogels were obtained by conventional evaporating the liquid phase from non silylated gels. The samples were characterized by nitrogen adsorption and small angle X-ray scattering (SAXS). The structure of the wet gels and of the aerogels prepared with the surfactant exhibited characteristics of mass-fractal structures with fractal dimension D in the range 2.1-2.2 for the wet gels and 2.3-2.4 for the aerogels. The characteristic size of the fractal domain reduces while the size a0 of the primary silica particle composing the fractal structure increases with the drying of the gels, in a process in which share of the porosity is eliminated. Aerogels exhibited typical values for the specific surface of 900 m2g-1 and of 3.5 cm3.g-1 for the total pore volume. These values are correspondingly comparable to those of the aerogels prepared by supercritical drying, since the silylation process replaces hydrophilic –OH groups by hydrophobic –Si-R3 ones, inhibiting the porosity elimination on drying. The silica particle size also increases lightly with the silylation because the attachment of the –Si-R3 groups on the silica surface. The pore size distribution curves of the aerogels are similar for all samples exhibiting a maximum in around 40 nm, independent the concentration of surfactant. This suggests that the characteristic size of 40 nm is due to the association of surfactant micelles... (Complete abstract click electronic access below)
Resumo:
In the present work the thermal characteristics of gels and xerogels of Silica/organic hybrids derived from different concentrations of GPTS-TEOS were investigated by thermal analysis (TG, DTA, and DSC). The preparation of gels of the Silica/organic hybrid matrix was held through the sol-gel process, consisting by the hydrolysis of alkoxides GPTS and TEOS in proportion (1:1) and (1:2) that was promoted in acidic conditions under reflux and stirring at 80oC/2h, producing the matrix in the colloidal state (sol). Gels were prepared by addition of NH4OH to the sol, promoting gelation of sol in sealed plastics containers. Part of the gels samples was analyzed by TG, DTS and DSC techniques in order to characterize water loss and degradation of the polymeric “epoxy” groups present in the structure of the silica derived from the GPTS alkoxide. Another set of samples was dried at 80oC/48h to obtain xerogels (dried gels) and analyzed by the same techniques. We obtained the characteristics temperatures of the matrix by the techniques DTA, DSC and TG, under measurements of thermal analysis until 800oC and 600oC in case of DSC. By thermal analysis (TG, DTA, and DSC) the main endothermic events (loss of water, melting, pyrolysis) and exothermic events (burning of the polymer) of the GPTS-TEOS matrix were determined
Resumo:
Therebar of aluminum 1350 AA produced by CBA are used inthe manufacture of wires and cables for electric power transmission, which marketshows increasingly favorableto aluminum due to itslow densityand high electrical conductivity, but to ensure that this materialmeets all specifications of projectsfor electricity transmission, it must have homogeneity in the chemicaland mechanicalproperties.One of the points of improvement in the process of rod production isreducing the high variation of the limitof tensile strengthalong the coils, therefore, this work seeks a better understanding of the factors that significantly influence the mechanical properties of rebar, specifically assessing the influence oftemperatureat the output of the coils, which can cause a recovery effect on the material andif thereare relevantdifferences between the two modes of rebar production: auto and manual.Samples of six coils have been specifically produced forthis study, which weresubsequently subjected to different annealing temperatures for one hour and ten minutes, similar to what occurs in the output of the coil from the machine. The tensile tests showed that aluminum 1350 AA is significantly influenced by temperature, whose behavior was very similar to that presented in the literature. It was found that the phenomenon of recovery occurred more significantly at high temperatures. Through the optical electron microscope Zeiss, 18 surface maps were made with 100x magnification for each sample in different conditions and the images were analyzed using entropy and fractal dimension, aiming to relate the condition of surface hardening on mechanical property of the samples in that condition. The results showed that these methods can be applied, provided they do not have any kind of imperfection on the surface, once they can influence the results. The study concluded that a more efficient cooling is required in ... (Complete abstract click electronic access below)
Resumo:
A Doença Inflamatória Intestinal (DII) engloba um grupo de processos inflamatórios crônicos de causas não conhecidas. Duas formas clínicas da DII são reconhecidas atualmente: a Retocolite Ulcerativa (RU) e a Doença de Crohn (DC). Foram isoladas de 348 amostras, dos quais 17 foram diagnosticados com com DC, e 40 com RU. Os 41 restantes apresentavam outras patologias e compreenderam o grupo controle. Entre as amostras que apresentaram adesão positiva, 110 delas apresentaram padrão de Adesão Agregativa (AA) e 19 apresentaram padrão de Adesão Difusa (AD). A cepa, DII/013, apresentou o padrão de adesão agregativo e invisibilidade média 18 vezes superior à cepa da EIEC. Quando observada ao microscópio eletrônico, bactérias intracelulares foram detectadas na amostra. Assim, a maioria das amostras apresentaram padrão de adesão agregativo, indicando juntamente com estudos anteriores, que esse padrão teria uma possível relação com a patogenicidade da bactéria em relação a DII
Resumo:
The increasing demand for devices for solid state applications in many technological areas has resulted in a high demand for new materials. Among these material have the advantage of being manufactured with different chemical compositions, and may have physical properties equal to or higher than the corresponding crystalline material. The aim of this paper was to produce borate glass system 50B2O3 – 15CuO – 20Li2O – 15X (X = Na2O, K2O, RbCl e Cs2O) to analyze the influence of the atomic radius of alkali in the physical properties of this glass system. The glasses were synthesized by the process of melting and molding. The characteristic temperatures were determined by the technique of scanning calorimetry (DSC). The non-crystalline was determined by x-ray diffraction. In order to determine the molar volume a density measurement by using the Archimedes method was used. The structural characterization was carried out using the technique of infrared spectroscopy
Resumo:
The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties
Resumo:
In this work a study about the mechanical properties of the API 5L X70 steel, with or without heat treating, has been made, with the intetion of assess the influence of cooling after the austenitization heat treating by air cooling (normalizing) and a rapid cooling with oil (tempering). This steel is known by high strength and ductility values and it is commonly used in the manufacture of oil pipes. The growing energy demand encouraged the study and manufacture of this material. Although this microalloyed dispense subsequent heat treatings, it was proven that its implementation is very advantageous for this type of application, improving hardness and plastic stability. It was also assessed that the faster the cooling rate is, the better will be these properties
Resumo:
Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free
Resumo:
The increasing application of structural composites in the aerospace industry is mainly due to its low specific weight coupled with its excellent mechanical properties when in service. As a result of climatic variations that pass the aircraft is of paramount importance to study the influence of weathering on this type of material when subjected to such changes. The purpose of this work is to evaluate the mechanical behavior of specimens of kevlar fiber /epoxy matrix composites, by dynamic mechanical thermal analysis (DMA) and interlaminar shear strength tests (ILSS), after passing through three environmental conditioning: saline fog, hygrothermal and ultraviolet radiation. From the results, we concluded that the laminate was molded supplied homogeneously, not presenting problems such as porosity, delaminations or cracks inside. After a period of 625 hours of exposure to hygrothermal conditioning, we observed a 1,2% maximum of absorption of moisture. Samples subjected to the conditioning by UV irradiation (600 hours) and salt spray showed a reduction of about 24,30% and 32,30%, respectively, on the shear strength (ILSS). In DMA analysis is not observed significant changes on the glass transition temperature. However, when considering the storage modulus of the samples conditioned by UV radiation (1200 hours), salt spray and hygrothermal conditioning there is an increase of 5,34% , 7,19% and 5,57% respectively
Resumo:
The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions
Resumo:
Este trabalho teve por objetivo desenvolver hidrogéis do ácido acrílico e correlacionar as propriedades bioadesivas e a liberação in vitro empregando metronidazol. Para tanto, inicialmente foram preparadas dispersões dos polímeros Carbopol 974 ® e Policarbofil ® nas concentrações de 0,5%, 1,0% e 1,5%, que foram submetidas a testes para avaliação das propriedades bioadesivas, mecânicas e reológicas. As amostras com maior concentração de polímeros (Carbopol 974 ® 1,5%, e Policarbofil ® 1,0% e 1,5%,) foram as que apresentaram melhores resultados nos testes de bioadesão, e portanto selecionadas para prosseguimento dos estudos, que envolveu a incorporação de metronidazol (MTZ) na concentração de 0,5% para estudo de liberação in vitro por 12 horas. O experimento foi realizado por meio do sistema automático com célula de difusão vertical de Franz e solução tampão fosfato pH 7,4 como solução receptora. A temperatura utilizada foi 32,5 o C. Os resultados demonstraram que o tipo e a concentração do polímero influenciou diretamente na liberação do fármaco. Os melhores resultados em termos de controle de liberação foram apresentados pelo polímero Policarbofil ® na concentração de 1,5%
Resumo:
Geophysics studies in areas impacted by petroleum derivatives describe abnormalities of both low and high electrical resistivity (the opposite of electrical conductivity), confirmed as contaminant phase by chemical analysis: this contradiction can be explained by degrading processes that naturally occur and create sub products that can change the environment conductivity. Monitoring the variation of the parameters mentioned serves as a comparative basis to the variation in geoelectrical parameters, which identified the correlation between the same contaminant parameters and the difference between their behavior studied apart, as well as its relations with the biodegradation process. The results are applied to the fuel distribution and storage sectors, leading to the diagnosis and monitoring of possible groundwater contamination scenarios, and the knowledge of the area exposure time to the contaminant, besides the better remediation alternative and impacts control. Among some conclusions, the most significant are the decrease in conductivity over time, so as the increase in Eh value in the gasoline contaminated tank, as well as the decrease in the pH value in the second tank with ethanol, which can be attributed to its degradation. Comparing the variations in both tanks, it is evident that Eh, pH and electrical conductivity do not behave temporally in a similar way, although some correlations between Eh and pH can be related.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Many types of food contain ingredients or bioactive compounds that provide health benefits. The collagen is a fibrous protein found in the connective tissue of the body, and it plays a part in the tissues resistance and elasticity. Due to their functional characteristics, this protein has been added into foods in order to achieve therapeutic effects. This paper aimed at showing how the collagen formation occurs, and the beneficial effects of this compound in the organism as well as its characteristics, properties and applications in food.
Resumo:
This study presents a literature review which shows the nutritional, medicinal and antioxidant importance of mushrooms. In this research, the main antioxidant compounds of mushrooms, such as phenolic acids, flavonoids and tocopherols, as well as their mechanisms of action were described. The main in vitro methods used for evaluation of the antioxidant activity of these compounds were approached. The influences from the solvent polarity and the kind of extraction in the acquisition of the antioxidant compounds were also discussed. It was possible to conclude that mushrooms are a source of carbohydrates, proteins and minerals, thus presenting nutritional properties. The functional and medicinal properties are attributed to glucans, besides being excellent sources of natural antioxidants. Regarding the extraction process, it was noticed that the solvent polarity used in the extraction process is determinant in the obtainment of antioxidant compounds.