960 resultados para Production performance
Resumo:
L'industrie du ciment est l'une des principales sources d'émission de dioxyde de carbone. L'industrie mondiale du ciment contribue à environ 7% des émissions de gaz à effet de serre dans l'atmosphère. Afin d'aborder les effets environnementaux associés à la fabrication de ciment exploitant en permanence les ressources naturelles, il est nécessaire de développer des liants alternatifs pour fabriquer du béton durable. Ainsi, de nombreux sous-produits industriels ont été utilisés pour remplacer partiellement le ciment dans le béton afin de générer plus d'économie et de durabilité. La performance d'un additif de ciment est dans la cinétique d'hydratation et de la synergie entre les additions et de ciment Portland. Dans ce projet, deux sous-produits industriels sont étudiés comme des matériaux cimentaires alternatifs: le résidu de silice amorphe (RSA) et les cendres des boues de désencrage. Le RSA est un sous-produit de la production de magnésium provenant de l'Alliance Magnésium des villes d'Asbestos et Thedford Mines, et les cendres des boues de désencrage est un sous-produit de la combustion des boues de désencrage, l'écorce et les résidus de bois dans le système à lit fluidisé de l'usine de Brompton située près de Sherbrooke, Québec, Canada. Récemment, les cendres des boues de désencrage ont été utilisées comme des matériaux cimentaires alternatifs. L'utilisation de ces cendres comme matériau cimentaire dans la fabrication du béton conduit à réduire la qualité des bétons. Ces problèmes sont causés par des produits d'hydratation perturbateurs des cendres volantes de la biomasse quand ces cendres sont partiellement mélangées avec du ciment dans la fabrication du béton. Le processus de pré-mouillage de la cendre de boue de désencrage avant la fabrication du béton réduit les produits d'hydratation perturbateurs et par conséquent les propriétés mécaniques du béton sont améliorées. Les approches pour étudier la cendre de boue de désencrage dans ce projet sont : 1) caractérisation de cette cendre volante régulière et pré-humidifiée, 2) l'étude de la performance du mortier et du béton incorporant cette cendre volante régulière et pré-humidifiée. Le RSA est un nouveau sous-produit industriel. La haute teneur en silice amorphe en RSA est un excellent potentiel en tant que matériau cimentaire dans le béton. Dans ce projet, l'évaluation des RSA comme matériaux cimentaires alternatifs compose trois étapes. Tout d'abord, la caractérisation par la détermination des propriétés minéralogiques, physiques et chimiques des RSA, ensuite, l'optimisation du taux de remplacement du ciment par le RSA dans le mortier, et enfin l'évaluation du RSA en remplacement partiel du ciment dans différents types de béton dans le système binaire et ternaire. Cette étude a révélé que le béton de haute performance (BHP) incorporant le RSA a montré des propriétés mécaniques et la durabilité, similaire du contrôle. Le RSA a amélioré les propriétés des mécaniques et la durabilité du béton ordinaire (BO). Le béton autoplaçant (BAP) incorporant le RSA est stable, homogène et a montré de bonnes propriétés mécaniques et la durabilité. Le RSA avait une bonne synergie en combinaison de liant ternaire avec d'autres matériaux cimentaires supplémentaires. Cette étude a montré que le RSA peut être utilisé comme nouveaux matériaux cimentaires dans le béton.
Resumo:
La eliminación de barreras entre países es una consecuencia que llega con la globalización y con los acuerdos de TLC firmados en los últimos años. Esto implica un crecimiento significativo del comercio exterior, lo cual se ve reflejado en un aumento de la complejidad de la cadena de suministro de las empresas. Debido a lo anterior, se hace necesaria la búsqueda de alternativas para obtener altos niveles de productividad y competitividad dentro de las empresas en Colombia, ya que el entorno se ha vuelto cada vez más complejo, saturado de competencia no sólo nacional, sino también internacional. Para mantenerse en una posición competitiva favorable, las compañías deben enfocarse en las actividades que le agregan valor a su negocio, por lo cual una de las alternativas que se están adoptando hoy en día es la tercerización de funciones logísticas a empresas especializadas en el manejo de estos servicios. Tales empresas son los Proveedores de servicios logísticos (LSP), quienes actúan como agentes externos a la organización al gestionar, controlar y proporcionar actividades logísticas en nombre de un contratante. Las actividades realizadas pueden incluir todas o parte de las actividades logísticas, pero como mínimo la gestión y ejecución del transporte y almacenamiento deben estar incluidos (Berglund, 2000). El propósito del documento es analizar el papel de los Operadores Logísticos de Tercer nivel (3PL) como promotores del desempeño organizacional en las empresas colombianas, con el fin de informar a las MIPYMES acerca de los beneficios que se obtienen al trabajar con LSP como un medio para mejorar la posición competitiva del país.
Resumo:
El presente trabajo son analizan las representaciones nacionalistas elaboradas por la sociedad bogotana en el marco de la celebración del Centenario de Simón Bolívar en 1883. La celebración es tomada como una puesta en escena, en la medida en que es un evento en donde los ámbitos de producción y recepción se entrelazan en un solo momento. En este sentido, se parte desde las concepciones nacionalistas impulsadas por los políticos de la Regeneración, la cual consintió en la modernización de Colombia a través de la tradición, para luego evidenciar cómo estas ideas y conflictos en torno a diversos ideales de nación se entablaron en el ámbito del Centenario. En el Centenario se pregona un cese a las hostilidades internas, una unidad nacional y una identificación del país bajo la figura de Simón Bolívar como padre y caudillo de la patria en la búsqueda hacia ‘la civilización’ y el ‘progreso’ de la nación. Así, el presente trabajo aporta a los estudios históricos en clave cultural de las celebraciones centenarias en Colombia y su incidencia en la construcción de la nación durante el siglo XIX.
Resumo:
Tannins are widespread throughout the plant kingdom, occurring as hydrolysable and condensed tannins and at different levels in several animal feeding sources. Recent years have seen an increasing interest in the use of tannin-rich plants and plant extracts in ruminant diets for improving the quality of their edible products. Some results show that this strategy is effective in improving the fatty acid profile of meat and milk, increasing the level of health-beneficial fatty acids as well as enhancing the oxidative stability of the products. However, the use of tannin-rich feed in animal diets requires great care, due to its possible detrimental effects on animal performance and induction of metabolic disorders. Although promising, the results of studies on the effects of tannins on animal performance and quality of their products are still controversial, probably depending on type and chemical structure of tannins, amount ingested, composition of diet, and species of animal. In this chapter, the current knowledge regarding the effect of dietary tannins on animal performance and the quality of their products (meat and milk), particularly on the fatty acid profile, oxidative stability, and organoleptic properties, is reviewed. The tannin chemistry diversity and its occurrence in ruminant diets, as well as its beneficial and adverse effects on ruminants, will be briefly reviewed, and aspects related to oral cavity physiology, saliva production/composition, and postingestive effects will also be discussed.
Resumo:
The Opuntia ficus-indica (L.) Miller is a species from the Cactaceae family with the center of origin and domestication in central Mexico. This species introduction in the Iberia Peninsula occurred, probably, by the end of the 15th century, after the discovery of America, spreading later throughout the Mediterranean basin. In Portugal, O. ficus-indica is located, usually, with a typical ruderal behavior, at the edge of roads and paths. In Portugal, as in other Mediterranean regions, inlands areas are under severe draught during extensive summers, in particular, and global warming is expected to affect them deeply in the near future. O. ficus-indica, by its morpho-physiological characteristics and multiple economic uses, represent an alternative crop for those regions. Sixteen Portuguese O. ficus indica ecotypes and two ‘Italian’ cultivars ("Gialla" and "Bianca") were evaluated for plant vigor and biomass production, by nondestructive methods, in the two years following planting. Biomass production and plant vigor were measured by estimating cladode number, cladode area and fresh weight per plant. Linear models to predict the area of cladodes and fresh weight per plant were previously established using a biometric analysis of 180 cladodes. It was not possible to establish an accurate linear model for dry matter using non-destructive estimation. Significant differences were found among populations in the studied biomass-related parameters, and different groups were unfolded. A group of four Portuguese ecotypes outperformed in terms of biomass production, comparable with the “Gialla” cultivar. This group could be used to start a breeding program with the objective of deploy material for animal feeding, biomass and fruit production. Nevertheless, the ‘Gialla’ cultivar showed the best performance, achieving the highest biomass related parameters, not surprisingly for it is an improved plant material.
Resumo:
This chapter aims to develop a new method for the economical evaluation of Hybrid Systems for electricity production. The different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. The presented methodology was applied to evaluate the design of a photovoltaic-wind-diesel hybrid system to produce electricity for a community in the neighbourhood of Luanda, Angola. Once the hybrid generator is selected, it is proposed to provide the system with a supervisory control strategy to maximize its operating efficiency.
Resumo:
2016
Resumo:
2016
Resumo:
The root knot nematode (RKN), Meloidogyne incognita, is widespread worldwide and a major pathogen of several cultivated crops. The use of resistant genotypes is the most effective and environmentally sound way to manage RKN. In this study, we screened 16 selected sweet potato cultivars including Amanda, Bárbara, Beatriz, Beauregard, Brazlândia Branca, Brazlândia Rosada, Brazlândia Roxa, BRS Amélia, BRS Cuia, BRS Rubissol, Carolina Vitória, Duda, Júlia, Marcela, PA-26/2009, and Princesa obtained from Embrapa and Universidade Federal do Tocantins? germplasm bank. Studies were conducted under greenhouse and field conditions and the agronomic performance of the cultivars was evaluated in a nematode and soilborne insect-infested field. All 16 sweet potato cultivars tested were rated as resistant to this nematode both under greenhouse and field conditions with reproduction factors < 1. In the field infested with M. incognita, sweet potato cultivars Duda, BRS Amélia, Beauregard, Brazlândia Rosada, and Brazlândia Roxa stood out as superior cultivars, with average yield ranging from 26 to 47 tons per ha. Overall, most cultivars exhibited a fusiform to near fusiform root shape, a good characteristic for the market, and were moderately affected by insects (attack incidence 1 to 30%). As global demand for energy continues to rise, selecting new cultivars of sweet potatoes with increased resistance to nematode diseases and with high yield will be important for food security and biofuel production.
Resumo:
ABSTRACT: In order to evaluate the efficiency of phytase in diets with low and high phytate phosphorus (PP) content, as a consequence of wheat bran inclusion, on the relative weight of organs, intestinal morphometry and performance, three hundred and eighty-four male Cobb500 broilers were housed in metabolic cages. Animals were assigned into four treatments in a 2x2 factorial scheme in a randomized block design with eight replicates of 12 birds each. From 11 days of age birds received experimental diets, which consisted of: Diet low in PP; Diet low in PP with phytase (500FTU kg-1); Diet with a high PP and Diet with a high PP with phytase (500FTU kg-1). At 22 and 32 days of age two birds were slaughtered in order to collect gizzard, heart, liver, cecum, cloacal bursa, and at 32 days, a portion of the duodenum, jejunum and ileum was collected for morphometric evaluation. From 22 to 32 days of age average feed intake, average weight gain, average body weight and feed conversion ratio were also evaluated. Data were subjected to analysis of variance, fixed effects of diet and phytase and interaction between factors as well as the random block effects were tested. There was no significant interaction for the variables studied, concluding that phytase in diets with low or high phytate phosphorus content did not change the relative weight of organs, intestinal morphometrics and performance; only isolated effects were observed. RESUMO: Para avaliar a eficiência da fitase em dietas com baixo e alto teor de fósforo fítico (PP), em função da inclusão ou não do farelo de trigo, sobre o peso relativo de órgãos, morfometria intestinal e desempenho, foram alojados 384 frangos de corte, machos da linhagem Cobb500, em gaiolas metabólicas. Os animais foram distribuídos em quatro tratamentos em um arranjo fatorial 2x2 em delineamento de blocos casualizados com oito repetições e 12 aves por unidade experimental (UE). A partir de 11 dias de idade as aves receberam as dietas experimentais, que consistiram em: Dieta com baixo teor de PP; Dieta com baixo teor de PP com fitase (500FTU kg-1); Dieta com alto teor de PP e Dieta com alto teor de PP com fitase (500FTU kg-1). Aos 22 e 32 dias de idade foram abatidas duas aves por UE para coletar a moela, coração, fígado, ceco, bolsa cloacal, e aos 32 dias foi coletada uma porção do duodeno, jejuno e íleo para avaliação da morfometria. No período de 22 a 32 dias de idade foram avaliados o consumo médio de ração, ganho de peso médio, peso médio corporal e a conversão alimentar. Os dados foram submetidos à análise de variância, onde foram testados os efeitos fixos de dieta e fitase e a interação entre os fatores, bem como o efeito aleatório de bloco. Não foi observada interação significativa para nenhuma das variáveis estudadas, concluindo-se que a fitase em dietas com baixo ou alto de PP não altera o peso relativo dos órgãos, a morfometria intestinal e o desempenho, apenas efeitos isolados foram observados.
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.
Resumo:
This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.
Resumo:
Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.
Resumo:
Cleaning is one of the most important and delicate procedures that are part of the restoration process. When developing new systems, it is fundamental to consider its selectivity towards the layer to-be-removed, non-invasiveness towards the one to-be-preserved, its sustainability and non-toxicity. Besides assessing its efficacy, it is important to understand its mechanism by analytical protocols that strike a balance between cost, practicality, and reliable interpretation of results. In this thesis, the development of cleaning systems based on the coupling of electrospun fabrics (ES) and greener organic solvents is proposed. Electrospinning is a versatile technique that allows the production of micro/nanostructured non-woven mats, which have already been used as absorbents in various scientific fields, but to date, not in the restoration field. The systems produced proved to be effective for the removal of dammar varnish from paintings, where the ES not only act as solvent-binding agents but also as adsorbents towards the partially solubilised varnish due to capillary rise, thus enabling a one-step procedure. They have also been successfully applied for the removal of spray varnish from marble substrates and wall paintings. Due to the materials' complexity, the procedure had to be adapted case-by-case and mechanical action was still necessary. According to the spinning solution, three types of ES mats have been produced: polyamide 6,6, pullulan and pullulan with melanin nanoparticles. The latter, under irradiation, allows for a localised temperature increase accelerating and facilitating the removal of less soluble layers (e.g. reticulated alkyd-based paints). All the systems produced, and the mock-ups used were extensively characterised using multi-analytical protocols. Finally, a monitoring protocol and image treatment based on photoluminescence macro-imaging is proposed. This set-up allowed the study of the removal mechanism of dammar varnish and semi-quantify its residues. These initial results form the basis for optimising the acquisition set-up and data processing.