843 resultados para Process Modelling, Process Management, Risk Modelling
Resumo:
Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.
Resumo:
One of the riskiest activities in the course of a person's work is driving. By developing and testing a new work driving risk assessment measurement tool for use by organisations this research will contribute to the safety of those who drive for work purposes. The research results highlighted limitations associated with current self-report measures and provided evidence that the work driving environment is extremely complex and involves constant interactions between humans, vehicles, the road environment, and the organisational context.
Resumo:
Pedestrian safety is a critical issue in Ethiopia. Reports show that 50 to 60% of traffic fatality victims in the country are pedestrians. The primary aim of this research was to examine the possible causes of and contributing factors to crashes with pedestrians in Ethiopia, and improve pedestrian safety by recommending possible countermeasures. The secondary aim was to develop appropriate pedestrian crash models for two-way two-lane rural roads and roundabouts in the capital city of Ethiopia. This research uses quantitative methods throughout the process of the investigation. The research has applied various statistical methods. The results of this research support the idea that geometric and operational features have significant influence on pedestrian safety and crashes. Accordingly, policies and strategies are needed to safeguard pedestrians in Ethiopia.
Resumo:
In this paper we illustrate a set of features of the Apromore process model repository for analyzing business process variants. Two types of analysis are provided: one is static and based on differences on the process control flow, the other is dynamic and based on differences in the process behavior between the variants. These features combine techniques for the management of large process model collections with those for mining process knowledge from process execution logs. The tool demonstration will be useful for researchers and practitioners working on large process model collections and process execution logs, and specifically for those with an interest in understanding, managing and consolidating business process variants both within and across organizational boundaries.
Resumo:
Abnormally high price spikes in spot electricity markets represent a significant risk to market participants. As such, a literature has developed that focuses on forecasting the probability of such spike events, moving beyond simply forecasting the level of price. Many univariate time series models have been proposed to dealwith spikes within an individual market region. This paper is the first to develop a multivariate self-exciting point process model for dealing with price spikes across connected regions in the Australian National Electricity Market. The importance of the physical infrastructure connecting the regions on the transmission of spikes is examined. It is found that spikes are transmitted between the regions, and the size of spikes is influenced by the available transmission capacity. It is also found that improved risk estimates are obtained when inter-regional linkages are taken into account.
Resumo:
Cost estimating has been acknowledged as a crucial component of construction projects. Depending on available information and project requirements, cost estimates evolve in tandem with project lifecycle stages; conceptualisation, design development, execution and facility management. The premium placed on the accuracy of cost estimates is crucial to producing project tenders and eventually in budget management. Notwithstanding the initial slow pace of its adoption, Building Information Modelling (BIM) has successfully addressed a number of challenges previously characteristic of traditional approaches in the AEC, including poor communication, the prevalence of islands of information and frequent reworks. Therefore, it is conceivable that BIM can be leveraged to address specific shortcomings of cost estimation. The impetus for leveraging BIM models for accurate cost estimation is to align budgeted and actual cost. This paper hypothesises that the accuracy of BIM-based estimation, as more efficient, process-mirrors of traditional cost estimation methods, can be enhanced by simulating traditional cost estimation factors variables. Through literature reviews and preliminary expert interviews, this paper explores the factors that could potentially lead to more accurate cost estimates for construction projects. The findings show numerous factors that affect the cost estimates ranging from project information and its characteristic, project team, clients, contractual matters, and other external influences. This paper will make a particular contribution to the early phase of BIM-based project estimation.
Resumo:
We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.
Resumo:
Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
The Great Barrier Reef (GBR) is the largest reef system in the world; it covers an area of approximately 2,225,000 km² in the northern Queensland continental shelf. There are approximately 750 reefs that exist within 40 km of the Queensland coast. Recent research has identified that poor water quality is having negative impacts on the GBR (Haynes et al. 2007). The Fitzroy Basin covers 143,000 km² and is the largest catchment draining into the GBR as well as being one of the largest catchments in Australia (Karfs et al. 2009). The Burdekin Catchment is the second largest catchment entering into the GBR and covers 133,432 km².The prime determinant for the changes in water quality entering into the GBR have been attributed to grazing, with beef production the largest single land use industry comprising 90% of the land area (Karfs et al. 2009). Extensive beef production contributes over $1 billion dollars to the national economy annually and employs over 9000 people, many in rural communities (Gordon 2007). ‘Economic modelling of grazing systems in the Fitzroy and Burdekin catchments’ was a joint project with the Fitzroy Basin Association and the Queensland Department of Employment Economic Development and Innovation. The project was formed under the federally funded Caring For Our Country and the Reef Rescue programs. The project objectives were as follows; * Quantifying the costs of over-utilising available pasture and the resulting sediment leaving a representative farm for four of the major land systems in the Burdekin or Fitzroy catchments and identifying economically optimal pasture utilisation rates * Estimating the cost of reducing pasture utilisation rates below the determined optimal * Using this information, guide the selection of appropriate tools to achieve reduced utilisation rates e.g. extension process versus incentive payments or a combination of both * Model the biophysical and economic impacts of altering grazing systems to restore land condition e.g. from C condition to B condition for four land systems in the Burdekin or Fitzroy catchments.
Resumo:
Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.
Resumo:
The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.
Resumo:
A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.