982 resultados para Prediction Error
Resumo:
Considerable research effort has been devoted in predicting the exon regions of genes. The binary indicator (BI), Electron ion interaction pseudo potential (EIIP), Filter method are some of the methods. All these methods make use of the period three behavior of the exon region. Even though the method suggested in this paper is similar to above mentioned methods , it introduces a set of sequences for mapping the nucleotides selected by applying genetic algorithm and found to be more promising
Resumo:
The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.
Resumo:
Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.
Resumo:
Post-transcriptional gene silencing by RNA interference is mediated by small interfering RNA called siRNA. This gene silencing mechanism can be exploited therapeutically to a wide variety of disease-associated targets, especially in AIDS, neurodegenerative diseases, cholesterol and cancer on mice with the hope of extending these approaches to treat humans. Over the recent past, a significant amount of work has been undertaken to understand the gene silencing mediated by exogenous siRNA. The design of efficient exogenous siRNA sequences is challenging because of many issues related to siRNA. While designing efficient siRNA, target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. So before doing gene silencing by siRNAs, it is essential to analyze their off-target effects in addition to their inhibition efficiency against a particular target. Hence designing exogenous siRNA with good knock-down efficiency and target specificity is an area of concern to be addressed. Some methods have been developed already by considering both inhibition efficiency and off-target possibility of siRNA against agene. Out of these methods, only a few have achieved good inhibition efficiency, specificity and sensitivity. The main focus of this thesis is to develop computational methods to optimize the efficiency of siRNA in terms of “inhibition capacity and off-target possibility” against target mRNAs with improved efficacy, which may be useful in the area of gene silencing and drug design for tumor development. This study aims to investigate the currently available siRNA prediction approaches and to devise a better computational approach to tackle the problem of siRNA efficacy by inhibition capacity and off-target possibility. The strength and limitations of the available approaches are investigated and taken into consideration for making improved solution. Thus the approaches proposed in this study extend some of the good scoring previous state of the art techniques by incorporating machine learning and statistical approaches and thermodynamic features like whole stacking energy to improve the prediction accuracy, inhibition efficiency, sensitivity and specificity. Here, we propose one Support Vector Machine (SVM) model, and two Artificial Neural Network (ANN) models for siRNA efficiency prediction. In SVM model, the classification property is used to classify whether the siRNA is efficient or inefficient in silencing a target gene. The first ANNmodel, named siRNA Designer, is used for optimizing the inhibition efficiency of siRNA against target genes. The second ANN model, named Optimized siRNA Designer, OpsiD, produces efficient siRNAs with high inhibition efficiency to degrade target genes with improved sensitivity-specificity, and identifies the off-target knockdown possibility of siRNA against non-target genes. The models are trained and tested against a large data set of siRNA sequences. The validations are conducted using Pearson Correlation Coefficient, Mathews Correlation Coefficient, Receiver Operating Characteristic analysis, Accuracy of prediction, Sensitivity and Specificity. It is found that the approach, OpsiD, is capable of predicting the inhibition capacity of siRNA against a target mRNA with improved results over the state of the art techniques. Also we are able to understand the influence of whole stacking energy on efficiency of siRNA. The model is further improved by including the ability to identify the “off-target possibility” of predicted siRNA on non-target genes. Thus the proposed model, OpsiD, can predict optimized siRNA by considering both “inhibition efficiency on target genes and off-target possibility on non-target genes”, with improved inhibition efficiency, specificity and sensitivity. Since we have taken efforts to optimize the siRNA efficacy in terms of “inhibition efficiency and offtarget possibility”, we hope that the risk of “off-target effect” while doing gene silencing in various bioinformatics fields can be overcome to a great extent. These findings may provide new insights into cancer diagnosis, prognosis and therapy by gene silencing. The approach may be found useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in different areas of bioinformatics.
Resumo:
The aim of this paper is the investigation of the error which results from the method of approximate approximations applied to functions defined on compact in- tervals, only. This method, which is based on an approximate partition of unity, was introduced by V. Mazya in 1991 and has mainly been used for functions defied on the whole space up to now. For the treatment of differential equations and boundary integral equations, however, an efficient approximation procedure on compact intervals is needed. In the present paper we apply the method of approximate approximations to functions which are defined on compact intervals. In contrast to the whole space case here a truncation error has to be controlled in addition. For the resulting total error pointwise estimates and L1-estimates are given, where all the constants are determined explicitly.
Resumo:
In contradiction to the prediction of the Periodic Table but in agreement with earlier suggestions by Brewer and Mann, the ground state configuration of atomic Lawrencium (Z = 103) will not be 7s^2 6d^2 D_3/2 but 7s^2 7p ^2p_1/2. The reason for this deviation from normal trends across the Periodic Table are strong relativistic effects on the outermost 7P_l/2 orbital. Multicontiguration Dirac-Fock calculations are reported for Lawrencium and analogous lighter atoms. These calculations include contributions from magnetic and retardation interactions and an estimation of quantum electrodynamic corrections.
Resumo:
A set of parametrized equations has been published by Bratsch and Lagowski for calculating thermodynamic properties of the lanthanides, actinides, element 104, and certainrelated elements. Since these equations were applied to element 104, new values for the first four ionization energies and radii of the ions of charge +1, +2, +3, and +4 have been calculated for this element. The parametrized equations are used here with these new values to calculate some thermodynamic properties of element 104.
Resumo:
Within the quasimolecular (MO) kinematic dipole model we predict a strong dependence of the anisotropy of the MO radiation on the orientation of the heavy ion scattering plane relative to the direction of the photon detection plane.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.
Resumo:
Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste innerhalb einer ubiquitären Umgebung proaktiv an die Bedürfnisse der Nutzer angepasst werden. Aus diesem Grund hat die Kontextvorhersage einen signifikanten Stellenwert innerhalb des ’ubiquitous computing’. Nach unserem besten Wissen, verwenden gängige Ansätze in der Kontextvorhersage ausschließlich die Kontexthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers keine geeigneten Informationen, um eine zuverlässige Kontextvorhersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die ausschließlich die Kontexthistorie des Nutzers verwenden, dessen Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die Lücke der fehlenden Kontextinformationen in der Kontexthistorie des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte und indirekte Relationen, die zwischen den Kontexthistorien der verschiedenen Nutzer existieren können, aus. CCP basiert auf der Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussagen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu können, wird dieser in drei verschiedenen Experimenten evaluiert. Die erzielten Vorhersagegenauigkeiten werden mit denen von drei bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz, dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, verglichen. In allen drei Experimenten werden als Evaluationsbasis kollaborative Datensätze verwendet. Anschließend wird der CCP Ansatz auf einen realen kollaborativen Anwendungsfall, den proaktiven Schutz von Fußgängern, angewendet. Dabei werden durch die Verwendung der kollaborativen Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Gefahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kollaborative Datenbasis werden reale Bewegungskontexte der Fußgänger verwendet. Die Bewegungskontexte werden mittels Smartphones, welche die Fußgänger in ihrer Hosentasche tragen, gesammelt. Aus dem Grund, dass Kontextvorhersageansätze in erster Linie personenbezogene Kontexte wie z.B. Standortdaten oder Verhaltensmuster der Nutzer als Datenbasis zur Vorhersage verwenden, werden rechtliche Evaluationskriterien aus dem Recht des Nutzers auf informationelle Selbstbestimmung abgeleitet. Basierend auf den abgeleiteten Evaluationskriterien, werden der CCP Ansatz und weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen die rechtliche Kompatibilität der untersuchten Vorhersageansätze bezüglich des Rechtes des Nutzers auf informationelle Selbstbestimmung auf. Zum Schluss wird in der Dissertation ein Ansatz für die verteilte und kollaborative Vorhersage von Kontexten vorgestellt. Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den identifizierten rechtlichen Probleme, die bei der Vorhersage von Kontexten und besonders bei der kollaborativen Vorhersage von Kontexten, entgegenzuwirken.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
With the present research, we investigated effects of existential threat on veracity judgments. According to several meta-analyses, people judge potentially deceptive messages of other people as true rather than as false (so-called truth bias). This judgmental bias has been shown to depend on how people weigh the error of judging a true message as a lie (error 1) and the error of judging a lie as a true message (error 2). The weight of these errors has been further shown to be affected by situational variables. Given that research on terror management theory has found evidence that mortality salience (MS) increases the sensitivity toward the compliance of cultural norms, especially when they are of focal attention, we assumed that when the honesty norm is activated, MS affects judgmental error weighing and, consequently, judgmental biases. Specifically, activating the norm of honesty should decrease the weight of error 1 (the error of judging a true message as a lie) and increase the weight of error 2 (the error of judging a lie as a true message) when mortality is salient. In a first study, we found initial evidence for this assumption. Furthermore, the change in error weighing should reduce the truth bias, automatically resulting in better detection accuracy of actual lies and worse accuracy of actual true statements. In two further studies, we manipulated MS and honesty norm activation before participants judged several videos containing actual truths or lies. Results revealed evidence for our prediction. Moreover, in Study 3, the truth bias was increased after MS when group solidarity was previously emphasized.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.