873 resultados para Power and Energy
Resumo:
The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^
Resumo:
This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.
Resumo:
Instrument transformers serve an important role in the protection and isolation of AC electrical systems for measurements of different electrical parameters like voltage, current, power factor, frequency, and energy. As suggested by name these transformers are used in connection with suitable measuring instruments like an ammeter, wattmeter, voltmeter, and energy meters. We have seen how higher voltages and currents are transformed into lower magnitudes to provide isolation between power networks, relays, and other instruments. Reducing transient, suppressing electrical noises in sensitive devices, standardization of instruments and relays up to a few volts and current. Transformer performance directly affects the accuracy of power system measurements and the reliability of relay protection. We classified transformers in terms of purpose, insulating medium, Voltage ranges, temperature ranges, humidity or environmental effect, indoor and outdoor use, performance, Features, specification, efficiency, cost analysis, application, benefits, and limitations which enabled us to comprehend their correct use and selection criteria based on our desired requirements. We also discussed modern Low power instrument transformer products that are recently launched or offered by renowned companies like Schneider Electric, Siemens, ABB, ZIV, G&W etc. These new products are innovations and problem solvers in the domain of measurement, protection, digital communication, advance, and commercial energy metering. Since there is always some space for improvements to explore new advantages of Low power instrument transformers in the domain of their wide linearity, high-frequency range, miniaturization, structural and technological modification, integration, smart frequency modeling, and output prediction of low-power voltage transformers.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
OBJECTIVE: This in situ study evaluated the discriminatory power and reliability of methods of dental plaque quantification and the relationship between visual indices (VI) and fluorescence camera (FC) to detect plaque. MATERIAL AND METHODS: Six volunteers used palatal appliances with six bovine enamel blocks presenting different stages of plaque accumulation. The presence of plaque with and without disclosing was assessed using VI. Images were obtained with FC and digital camera in both conditions. The area covered by plaque was assessed. Examinations were done by two independent examiners. Data were analyzed by Kruskal-Wallis and Kappa tests to compare different conditions of samples and to assess the inter-examiner reproducibility. RESULTS: Some methods presented adequate reproducibility. The Turesky index and the assessment of area covered by disclosed plaque in the FC images presented the highest discriminatory powers. CONCLUSION: The Turesky index and images with FC with disclosing present good reliability and discriminatory power in quantifying dental plaque.
Resumo:
Objective To study the role of energy derived from sugar (both table sugar and sugar added to processed foods) in the total energy content of food purchases in Brazil.Design Food purchase data were collected during a national household budget survey carried out between June 2002 and July 2003 on a probabilistic sample representative of all households in the country. The amount of food purchased in this 12-month period was transformed into energy and energy from sugar using food composition tables. Multiple linear regression models were used to study the association between amount of energy from sugar and total energy content of food purchases, controlling for sociodemographic variables and potential interactions between these variables and sugar purchases.Results There was a positive and significant association between energy from sugar and total household energy purchases. A 1 kJ increase in sugar purchase corresponded to a 3·637 kJ increase in total energy. In the absence of expenditure on meals outside the home, i.e. when household food purchases tend to approximate actual food consumption by household members, sugar purchase of 1926·35 kJ/d (the 90th percentile of the distribution of sugar purchases in Brazil) was associated, depending on income strata, with total energy purchase over 40\201360 per cent of the recommended daily value for energy intake in Brazil.Conclusions The present results corroborate the recommendations of the WHO and the Brazilian Ministry of Health regarding limiting the consumption of sugar
Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men
Resumo:
A reduction in LDL cholesterol and an increase in HDL cholesterol levels are clinically relevant parameters for the treatment of dyslipidaemia, and exercise is often recommended as an intervention. This study aimed to examine the effects of acute, high-intensity exercise (similar to 90% VO(2max)) and varying carbohydrate levels (control, low and high) on the blood lipid profile. Six male subjects were distributed randomly into exercise groups, based on the carbohydrate diets (control, low and high) to which the subjects were restricted before each exercise session. The lipid profile (triglycerides, VLDL, HDL cholesterol, LDL cholesterol and total cholesterol) was determined at rest, and immediately and 1 h after exercise bouts. There were no changes in the time exhaustion (8.00 +/- A 1.83; 7.82 +/- A 2.66; and 9.09 +/- A 3.51 min) and energy expenditure (496.0 +/- A 224.8; 411.5 +/- A 223.1; and 592.1 +/- A 369.9 kJ) parameters with the three varying carbohydrate intake (control, low and high). Glucose and insulin levels did not show time-dependent changes under the different conditions (P > 0.05). Total cholesterol and LDL cholesterol were reduced after the exhaustion and 1 h recovery periods when compared with rest periods only in the control carbohydrate intake group (P < 0.05), although this relation failed when the diet was manipulated. These results indicate that acute, high-intensity exercise with low energy expenditure induces changes in the cholesterol profile, and that influences of carbohydrate level corresponding to these modifications fail when carbohydrate (low and high) intake is manipulated.
Resumo:
We analyzed the usefulness of a semi-tethered field running test (STR) and the relationships between indices of anaerobic power, anaerobic capacity and running performance in 9 trained male sprinters (22.2 +/- 2.9 yrs, 176 +/- 1 cm, 68.0 +/- 9.4 kg). STR involved an all out 120 m run attached to an apparatus that enabled power calculation from force and velocity measures. Subjects also carried out a cycloergometer Win-gate Anaerobic Test (WT), an all out 300 m run and had accessed their maximal accumulated oxygen deficit (MAOD) on a treadmill. Peak and mean powers attained in STR (1 720 +/- 221 and 1 391 +/- 201 W) were greater but significantly related (r=0.82; P<0.01) to those in the WT (808 +/- 130 and 603 +/- 87 W). In addition, power measures derived from the STR were stronger related to running performance compared to those from the WT (r=0.81-0.94 vs. 0.68-0.84; P<0.05). Relationships between MAOD and most power indices were only weak to moderate. These results support the usefulness of STR for specific power assessment in field running and suggest that anaerobic power and capacity are not related entities, irrespective of having been evaluated using similar or dissimilar exercise modes.
Resumo:
Nowadays there are several ways of supplying hot water for showers in residential buildings. One of them is the use of electric storage water heaters (boilers). This equipment raises the water temperature in a reservoir (tank) using the heat generated by an electric resistance. The behavior of this equipment in Brazil is still a research object and there is not a standard in the country to regulate its efficiency. In this context, an experimental program was conducted aiming to collect power consumption data to evaluate its performance. The boilers underwent an operation cycle to simulate a usage condition aiming to collect parameters for calculating the efficiency. This 1-day cycle was composed of the following phases: hot water withdrawal, reheating and standby heat loss. The methods allowed the identification of different parameters concerning the boilers work, such as: standby heat loss in 24 h, hot water withdrawal rate, reheating time and energy efficiency. The average energy efficiency obtained was of 75%. The lowest efficiency was of 62% for boiler 2 and the highest was of 85% for boiler 9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Haematopoiesis and blood cells` functions can be influenced by dietary concentration of nutrients. This paper studied the effects of dietary protein:energy ratio on the growth and haematology of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 +/- 0.4 g) were fed twice a day for 10 weeks until apparent saciety with diets containing 220, 260, 300, 340 or 380 g kg(-1) crude protein (CP) and 10.88, 11.72, 12.55, 13.39, 14.22 MJ kg(-1) digestible energy (DE) in a totally randomized experimental design, 5 x 5 factorial scheme (n=3). Weight gain and specific growth rate were affected (P < 0.05) by protein level only. Protein efficiency ratio decreased (P < 0.05) with increasing dietary protein at all levels of dietary energy. Daily feed intake decreased (P < 0.05) with increasing dietary energy. Mean corpuscular haemoglobin concentration was affected (P < 0.05) by DE and interaction between dietary CP and DE. Total plasma protein increased (P < 0.05) with dietary protein and energy levels. Plasma glucose decreased (P < 0.05) with increasing dietary protein. The CP requirement and optimum protein:energy ratio for weight gain of pacu fingerlings, determined using broken-line model, were 271 g kg(-1) and 22.18 g CP MJ(-1) DE respectively. All dietary CP and DE levels studied did not pose damages to fish health.
Resumo:
This article explores human rights and education based on an intervention experience conducted in three schools located in Sao Paulo City, which had as its main goal a substantial reduction in violence (2004-2005). The guideline was that education should be considered a basic human right, taking into consideration the power and authority relations that exist within this institution. What are the problems that we face, nowadays, to consider education as a human right, in the difficult Brazilian history? Is it possible to think about some kind of democratic authority within the school, when our vision of authority is linked to despotic leaders, or even when there is no space for any authority? How does this discussion associate with the violence in our daily life in school? These are some of the questions included in the debate proposed by this article.