879 resultados para Power System Simulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article shows an analysis of the longitudinal electric parameters of a three-phase transmission line/section using a 280-meter high steel tower. This characteristic, the height of the line conductors and distance between them, are intrinsic related to the longitudinal and transversal parameters of the line. By this means, an accurate study was carried out in order to show the electric variations between a transmission line using the new technology and a three-phase conventional 440 kV line for a wide range of frequencies and a variable soil resistivity. In addition, by using a digital line model, simulations are carried out in time domain to analyze critical overvoltage transients on the studied line. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the operational analysis of the single-phase integrated buck-boost inverter. This topology is able to convert the DC input voltage into AC voltage with a high static gain, low harmonic content and acceptable efficiency, all in one single-stage. Main functionality aspects are explained, design procedure, system modeling and control, and also component requirements are detailed. Main simulation results are included, and two prototypes were implemented and experimentally tested, where its results are compared with those corresponding to similar topologies available in literature. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydroelectric power plant Hidroltuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting Hidroltuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE) control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, there was an increase of ancillary service loads, such as signaling systems, inspection robots, surveillance cameras, and other monitoring devices distributed along high-voltage transmission lines which require low-power dc voltage supplies. This paper investigates the use of the induced voltage in the shield wires of an overhead 525 kV transmission line as a primary power source. Since phase current variations throughout the day affect the induced voltage in the overhead ground wire, a step-down dc-dc converter is used after rectification of the ac voltage to provide a regulated dc output voltage. The initial encouraging results obtained indicate that this form of power supply can be a feasible and cost-effective alternative for feeding small ancillary service loads. The simulation results are validated by field measurements as well as the installation of a 200 W voltage stabilization system prototype.