872 resultados para Power System Simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the analysis that have been carried out in the alarm system of the DCRanger EMS. The intention of this study is to present the problem of alarm processing in electric energy control centers, its various aspects and operational difficulties due to operator needs. Some tests are produced in order to identify the desirable features an alarm system should possess in order to be of effective help in the operative duty. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this work is to analyze the ability of FACTS devices like TCSC and UPFC to damp low frequency oscillations and a POD controller is also included. A comparative study of damping effect of those devices IS carried out. The Power Sensitivity Model (PSM) is used to the representation of the electric power system. Sensibility analysis using the residue method shows the best place for the installation of FACTS and the procedure to determine POD parameters. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology and a mathematical model to solve the expansion planning problem that takes into account the effect of contingencies in the planning stage, and considers the demand as a stochastic variable within a specified range. In this way, it is possible to find a solution that minimizes the investment costs guarantying reliability and minimizing future load shedding. The mathematical model of the expansion planning can be represented by a mixed integer nonlinear programming problem. To solve this problem a specialized Genetic Algorithm combined with Linear Programming was implemented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reliability is a key aspect in power system design and planning. Maintaining a reliable power system is a very important issue for their design and operation. Under the new competitive framework of the electricity sector, power systems find ever more and more strained to operate near their limits. Under this new scenario, it is crucial for the system operator to use tools that facilitate an energy dispatch that minimizes possible power cuts. This paper presents a mathematical model to calculate an energy dispatch that considers security constraints (single contingencies in transmission lines and transformers). The model involves pool markets and fixed bilateral contracts. Traditional methodologies that include security constraints are usually based in multistage dispatch processes. In this case, we propose a single-stage model that avoids the economic inefficiencies which result when conventional multi-stage dispatch approaches are applied. The proposed model includes an AC representation of the transport system and allows calculating the cost overruns incurred in due to reliability restrictions. We found that complying with fixed bilateral contracts, when they go above certain levels, might lead to congestion problems in transmission lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. © 2010 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a method to determine the output of all online units with minimum total cost when the amount of emission is reasonable. A joint economic and emission dispatch is proposed in order to get a significant compromise between costs and emission such that real power supply-demand equilibrium is satisfied. In order to have a meaningful compromise between costs and emission in the problem formulation, two variables are used, weighting factor and price penalty factor. A case study comprising of a 3-unit power system is employed, where various demand is used. Results for the test system indicate the fastness and effectiveness of proposed method. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the importance of using a top-down methodology and suitable CAD tools in the development of electronic circuits. The paper presents an evaluation of the methodology used in a computational tool created to support the synthesis of digital to analog converter models by translating between different tools used in a wide variety of applications. This tool is named MS 2SV and works directly with the following two commercial tools: MATLAB/Simulink and SystemVision. Model translation of an electronic circuit is achieved by translating a mixed-signal block diagram developed in Simulink into a lower level of abstraction in VHDL-AMS and the simulation project support structure in SystemVision. The method validation was performed by analyzing the power spectral of the signal obtained by the discrete Fourier transform of a digital to analog converter simulation model. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growing use of sensitive loads in the electric power system, especially in industrial applications, increases voltage sags related production losses considerably, stimulating a demand for power electronics' based solutions to mitigate the effects of such problems. This paper shows the implementation and some industrial certification tests of a power equipment prototype designed to correct sags and swells, a dynamic voltage restorer, which is one of the many possible solutions for voltage sags and swells problems Experimental results of a 75kVA prototype are shown both in laboratory and full load conditions, in a certification institution (IEE-USP). © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a mathematical model to analyze the impact of the installation and operation of dispersed generation units in power distribution systems is proposed. The main focus is to determine the trade-off between the reliability and operational costs of distribution networks when the operation of isolated areas is allowed. In order to increase the system operator revenue, an optimal power flow makes use of the different energy prices offered by the dispersed generation connected to the grid. Simultaneously, the type and location of the protective devices initially installed on the protection system are reconfigured in order to minimize the interruption and expenditure of adjusting the protection system to conditions imposed by the operation of dispersed units. The interruption cost regards the unsupplied energy to customers in secure systems but affected by the normal tripping of protective devices. Therefore, the tripping of fuses, reclosers, and overcurrent relays aims to protect the system against both temporary and permanent fault types. Additionally, in order to reduce the average duration of the system interruption experienced by customers, the isolated operation of dispersed generation is allowed by installing directional overcurrent relays with synchronized reclose capabilities. A 135-bus real distribution system is used in order to show the advantages of using the mathematical model proposed. © 1969-2012 IEEE.