971 resultados para Poly-caprolactone
Resumo:
The first and second generation carbosilane dendrimers with silicon hydride terminated were synthesized, and then reacted with bis(imino)pyridyl containing allyl [4-CH2==CHCH2-2,6-(Pr2C6H3N)-Pr-i==CMe(C5H3N)MeC==N(2,6-'Pr2C6H3)], in the presence of H2PtCl6 as a hydrosilylation catalyst, to afford the first and second generation carbosilane supported ligands. Complexation reactions with FeCl(2)(.)4H(2)O give rise to iron-containing carbosilane dendrimers with FeCl2 moieties bound on the periphery. The metallodendrimers were used as catalyst precursors, activated with modified methylaluminoxane, for the polymerization of ethylene. In the case of low Al/Fe molar ratio, the metallodendrimers display much higher catalytic activity towards ethylene polymerization and produce much higher molecule weight polyethylenes than the corresponding single-nuclear complex under the same conditions.
Resumo:
A novel AB(3)-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
Resumo:
A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.
Resumo:
The core-shell structured grafted copolymer particles of polybutadiene grafted polymethyl methacrylate (PB-g-PMMA, MB) were prepared by emulsion polymerization. The MB particles were used to modify poly (vinyl chloride) (PVC) by melt blending. The mechanical properties of the PVC blends were investigated. The micro-morphology of the PVC blends was observed by scanning electron microscopy (SEM). The results indicated that the samples with the best impact strength could be obtained when the core-shell weight ratio of PB to PMMA is lower than 93:7, the mechanical properties correlated well with SEM morphologies, the addition of modifier with the ratio core to shell of 93:7 could reduce the domain size of the dispersed phase. Furthermore, the compatibility and properties of the blends were greatly enhanced and improved. The modifier particles could be well dispersed in the PVC matrix.
Resumo:
A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxi- dase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 mumol l(-1), and the linear range was from 10.0 mumol l(-1) to 7.0 mmol l(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the Studied biosensor exhibited good current repeatability and good fabrication reproducibility.
Resumo:
Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism, and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.
Resumo:
The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a 'model drug'. These copolymers were synthesized from poly (ethylene glycol) (PEG) and L-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(L-lactide) (PLLA) block lengths (15-280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2x10(5) to 1.9x10(5) on the PLLA content in the copolymer and on the micelle configuration was also discussed.
Resumo:
To simplify the fabrication of multilayer light-emitting diodes, we prepared a p-phenylenevinylene-based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p-phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet-visible (UV-vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV-vis absorption spectra and atomic force microscopy. Double-layer devices using crosslinked PPVD as an emitting layer, 2-(4-tert-butylphenyl)-5-phenyl-1,3,4-oxadiazole (PBD) in poly(methyl methacrylate) as an electron-transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m(2) at 16 V were demonstrated. A 12-fold improvement in the luminance efficiency with respect to that of single-layer devices was realized.
Resumo:
A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).
Resumo:
A new kind of polyfluorene containing oxadiazole as the side chain was synthesized. The introduction of oxadiazole moiety as more bulky group prevents the aggregation and reduces the crystallinity of the polymers. Efficient intramolecular energy transfer from oxadiazole moiety to the conjugated backbone has been realized, leading to 70% improvement of photoluminescence quantum efficiency of the designed polymers. Compared with PAF, the PFOXD exhibits significant improvement in electroluminescence properties, with luminous efficiency of 0.8 cd/A and maximum luminance of 1800 cd/m(2).
Resumo:
Single-walled carbon nanotubes (SWNTs) were covalently functionalized with biocompatible poly-L-lysine, which is useful in promoting cell adhesion. SWNTs played an important role as connectors to assemble these active amino groups of poly-L-lysine, which provided a relative "friendly" and "soft" environment for further derivation, such as attaching bioactive molecules. As an application example, by further linking peroxidase, an amplified biosensing toward H2O2 concerning this assembly was investigated.
Resumo:
Mixtures of methanol/MTBE were separated with polyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes. The separation was attempted by vapor permeation instead of pervaporation, which had been used by most researchers. The separation properties of the hollow-fiber membranes and operating conditions are discussed. The results showed that separation factors of the blended polyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes were extremely high for the methanol/MTBE mixtures.
Resumo:
Flat-sheet microporous membranes from F2.4 for membrane distillation (MD) were prepared by phase inversion process. Dimethylacetamide (DMAC) and LiClO(4)(.)3H(2)O/trimethyl phosphate (TMP) were, respectively, used as solvent and pore-forming additives. The effects of casting solution composition, exposure time prior to coagulation and temperature of precipitation bath on F2.4 membrane structure were investigated. The morphology of resultant porous membrane was observed by scanning electron microcopy. Some natures of F2.4 porous membrane after drying in air, such as mechanical properties and hydrophobicity, were exhibited and compared with poly(vinylidene fluoride) (PVDF) membrane prepared by the same ways. Stress-at-break and strength stress of F2.4 microporous membrane are higher than that of PVDF membrane, and elongation percentage of F2.4 membrane at break is about eight-fold as great as that of PVDF membrane. Contact angle of F2.4 microporous membrane to water (86.6 +/- 0.51degrees) was also larger than that of PVDF mernbrane (80.0 +/- 0.78degrees). MD experiment was carried out using a direct contact membrane distillation (DCMD) configuration as final test to permeate performance of resultant microporous membrane.
Resumo:
A new method for syntheses of hyperbranched poly(ester-amide)s from commercially available A(2) and CBx type monomers has been developed on the basis of a series of model reactions. The aliphatic and semiaromatic hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by in situ thermal polycondensation of intermediates obtained from dicarboxylic acids (A(2)) and multihydroxyl primary amines (CBx) in N,N-dimethylformamide. Analyses of FTIR, H-1 NMR, and C-13 NMR spectra revealed the structures of the polymers obtained. The MALDI-TOF MS of the polymers indicated that cyclization side reactions occurred during polymerization. The hyperbranched poly(ester-amide) s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy. The DBs of the polymers were determined to be 0.38-0.62 by H-1 NMR or quantitive C-13 NMR and DEPT 135 spectra. These polymers exhibit moderate molecular weights, with broad distributions determined by size exclusion chromatography ( SEC), and possess excellent solubility in a variety of solvents such as N, N- dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and ethanol, and display glass-transition temperatures (T(g)s) between -2.3 and 53.2 degrees C, determined by DSC measurements.
Resumo:
The effect of crystallization on the lamellar orientation of poly( styrene)-b-poly(L-lactide) (PS-PLLA) semicrystalline diblock copolymer in thin films has been investigated by atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In the melt state, microphase separation leads to a symmetric wetting structure with PLLA blocks located at both polymer/substrate and polymer/air interfaces. The lamellar period is equal to the long period L in bulk determined by small-angle X-ray scattering (SAXS). Symmetric wetting structure formed in the melt state provides a model structure to study the crystallization of PLLA monolayer tethered on glassy (T-c < T-g,T-PS) or rubber (T-c > T-g,T-PS) PS substrate. In both cases, it is found that the crystallization of PLLA results in a "sandwich" structure with amorphous PS layer located at both folding surfaces. For T-c <= T-g,T- PS, the crystallization induces a transition of the lamellar orientation from parallel to perpendicular to substrate in between and front of the crystals. In addition, the depletion of materials around the crystals leads to the formation of holes of 1/2 L, leaving the adsorbed monolayer exposure at the bottom of the holes.