1000 resultados para Poly(A) tail
Resumo:
The performance of acrylonitrile-butadiene-styrene (ABS) core-shell modifier with different grafting degree, acrylonitrile (AN) content, and core-shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong inter-action between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core-shell ratio of ABS copolymers has important effect on PBT/ABS blends.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.
Resumo:
The nonisothermal crystallization behavior of poly (L-lactide)-poly(ethylene glycol) ( PLLA-PEG) diblock copolymer was studied by means of real-time WAXD, DSC and POM, and Ozawa equation was used to analyze the kinetics of PLLA-PEG under nonisothermal crystallization conditions. During the crystallization of the high-T-m block (PLLA), the low-T-m block (PEG) acts as a noncrystalline diluent, and the crystallization behavior of PLLA obeys the Ozawa theory. When the PEG block begins to crystallize, the PLLA phase is always partially solidified and the presence of the spherulitic microstructure of PLLA profoundly restricts its crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. Furthermore, the study of the crystalline morphology of PLLA-PEG at different cooling rates indicates that when the cooling rate is from low to high, the crystalline morphology undergoes a transformation from the ring-banded spherulites to the typical Maltese cross spherulites, which experiences the mixed crystalline morphologies of ring-banded and typical Maltese cross spherulites, and the spherulitic size becomes smaller.
Resumo:
The title compound, {[Mn-2(CH3CO2)(4)(C10H8N2)(2)](H2O)-H-.}(n), is a one-dimensional coordination polymer with a ladder-like structure. Two Mn-II atoms, each coordinated by a chelating acetate ligand, are bridged by two bidentate acetate ligands to form a centrosymmetric [Mn-2(CH3CO2)(4)] unit. Two 4,4'-bipyridine ligands link the [Mn-2(CH3CO2)(4)] units through Mn-N bonds to generate a molecular ladder. The water O atom lies on a crystallographic twofold rotation axis.
Resumo:
In the title compound, [Zn(C8H4O4)(C17H10N4O)](n), the Zn-II atom is five-coordinated by two N atoms from the phenanthro-line-derived ligand and three O atoms from one bidentate and one monodentate benzene-1,2-dicarboxylate (1,2-BDC) dianions in a distorted trigonal-bipyramidal geometry. The Zn-II atoms are bridged by the 1,2-BDC ligands to form a single-chain structure. Neighboring chains interact through pi-pi interactions, leading to a two-dimensional network.
Resumo:
Poly(L-lactide) (PLLA) surface was modified via aminolysis by poly(allylamine hydrochloride) (PAH) at high pH and subsequent electrostatic self-assembly of poly(sodium styrenesulfonate) (PSS) and PAH, and the process was monitored by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. These modified PLLAs were then used as charged substrates for further incorporation of gelatin to improve their cytocompatibility. The amphoteric nature of the gelatin was exploited and the gelatin was adsorbed to the negatively charged PLLA/PSS and positively charged PLLA/PAH at pH = 3.4 and 7.4, respectively. XPS and water contact angle data indicated that the gelatin adsorption at pH = 3.4 resulted in much higher surface coverage by gelatin than at pH = 7.4. All the modified PLLA surfaces became more hydrophilic than the virgin PLLA. Chondrocyte culture was used to test the cell attachment, cell morphology and cell viability on the modified PLLA substrates.
Resumo:
The four AB(2) monomers, N-[3- or 4-bis(4-hydroxyphenyl)toluoyl]-4-chlorophthalimide and N-{3- or 4-[1,1-bis(4-hydroxyphenyl)]ethylphenyl}-4-chlorophthalimides, were prepared and used for synthesis of hyperbranched poly(ether imide)s bearing hydroxyl end groups. These hyperbranched poly(ether imide)s had moderate molecular weights with broad distributions and showed glass-transition temperatures (Tgs) between 177 and 230 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 5% weight-loss temperatures (T-d(5%)) ranging from 240 to 281 degreesC. Analysis using H-1 NMR spectroscopy revealed the four types of hyperbranched poly(ether imide)s to have similar degrees of branching (ca. 60%). These polymers were modified by acylation or nucleophilic substitution reaction at the hydroxyl end groups. The conversion effectiveness depended on the type of modification reaction, modifier, and reaction conditions. The thermal stability and solubility of hyperbranched poly(ether imide)s were improved by the modification of the end groups.
Resumo:
The synthesis and characterization of hyperbranched aromatic poly(ester-imide)s are described. A variety of AB(2) monomers, N-[3- or 4-bis(4-acetoxyphenyl)toluoyl]-4-carboxyl-phthalimide and N-{3- or 4-[1,1-bis(4-acetooxyphenyl)]ethylphenyl}-4-carboxy phthalimides were prepared starting from condensation of nitrobenzaldehydes or nitroacetophenones with phenol and used for synthesis of hyperbranched poly(ester-imide)s containing terminal acetyl groups by transesterification reaction. These hyperbranched poly(ester-imide)s were produced with weight-average molecular weight of up to 6.87 g/mol. Analysis of H-1 NMR and C-13 NMR spectroscopy revealed the structure of the four hyperbranched poly(ester-imide)s. These hyperbranched poly(ester-imide)s exhibited excellent solubility in a variety of solvents such as N,N-dimethylacetamide, dimethyl sulfoxide, and tetrahydrofuran and showed glass-transition temperatures between 217 and 255 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 10% weight-loss temperature (T-d(10)) ranging from 365 to 416 degreesC in nitrogen.
Resumo:
The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
Graft copolymerization of maleic anhydride (MA) onto poly(3-hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB.
Resumo:
Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.
Resumo:
In order to improve its thermal stability, poly(propylene carbonate)(PPC) was end-capped by different active agents. Thermogravimetric data show that the degradation temperature of uncapped PPC was lower than that of end-capped PPC. The kinetic parameters of thermal degradation of uncapped and end-capped PPC were calculated according to Chang's method. The results show that different mechanisms operate during the whole degradation temperature range for uncapped PPC. In the first stage, chain unzipping dominates the degradation. With increasing temperature, competing multi-step reactions occur. In the last stage, random chain scission plays an important role in degradation. For end-capped PPC, random chain scission dominates the whole degradation process.
Resumo:
Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.