909 resultados para Plain Packaging
Resumo:
Mi sono occupato di confezionamento di bevande, un settore che utilizza largamente il PET. Il progetto di tesi consiste in un processo che serve a ideare nuove forme di contenitore in PET attraverso strumenti di ricerca e innovazione.
Resumo:
Partendo da un progetto su un servizio di trasporto di beni ortofrutticoli tramite bus, il mio progetto di tesi è andato a concentrarsi sui contenitori in cui si collocano frutta e verdura, tenendo in particolare considerazione la protezione degli stessi e un trasporto facilitato da parte dell'utente. Nel documento sono inoltre presenti la relazione del tirocinio svolto presso Open Project S.r.l. e la spiegazione sul progetto del portfolio lavori.
Resumo:
Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological and geochemical proxies. Radiocarbon and Pb/Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~ 1,400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the "alder high" that occurred in the region ~ 4.0 cal ka BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were therefore archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.
Resumo:
A tendência da distribuição moderna para a crescente utilização das embalagens secundárias para exposição dos produtos, aliada à grande importância da embalagem na promoção e venda dos mesmos, leva à necessidade de olhar de outra forma para o design de embalagem secundária Shelf Ready Packaging (SRP)/ Retail Ready Packaging (RRP). O objetivo deste projeto é o desenvolvimento de uma nova metodologia de design de embalagem SRP/RRP para a Cartonarte, Lda., visando a criação de uma nova embalagem SRP/RRP para um cliente relevante desta empresa. A proposta da nova embalagem SRP/RRP desenvolvida tem não só em atenção aspetos técnicos e a gestão de custos de produção e reposição nos retalhistas, como também questões comunicativas como a promoção do produto, a aparência na prateleira e uma boa ligação com o consumidor. A ligação com a embalagem primária (EP) e as questões ligadas à distribuição, como a fácil identificação, transporte e manuseamento, são também prioridades. O design deste tipo de embalagens assume cada vez mais importância, tendo-se conseguido desenvolver um modelo estrutural com pouco desperdício de matéria-prima, sem custos de produção desnecessários, com fácil manuseamento, amigo do consumidor, interligado graficamente à EP, melhorando também aspetos comunicacionais.
Resumo:
Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.
The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.
I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.
I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.
Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.
In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option.
Resumo:
Free and "bound" long-chain alkenones (C37?2 and C37?3) in oxidized and unoxidized sections of four organic matter-rich Pliocene and Miocene Madeira Abyssal Plain turbidites (one from Ocean Drilling Program site 951B and three from site 952A) were analyzed to determine the effect of severe post depositional oxidation on the value of Uk'37. The profiles of both alkenones across the redox boundary show a preferential degradation of the C37?3 compared to the C37?2 compound. Because of the high initial Uk'37 values and the way of calculating the Uk'37 this degradation hardly influences the Uk'37 profiles. However, for lower Uk'37 values, measured selective degradation would increase Uk'37 up to 0.17 units, equivalent to 5°C. For most of the Uk'37 band-width, much smaller degradation already increases Uk'37 beyond the analytical error (0.017 units). Consequently, for interpreting the Uk'37 record in terms of past sea surface temperatures, selective degradation needs serious consideration.
Resumo:
The Belgian coastal plain occupies a key position as it is located at the transition between the Southern North Sea Basin and the Strait of Dover. It is characterized by thick sequences (> 20 m) of Pleistocene terrestrial and littoral sediments. Yet the wider stratigraphical and palaeo-environmental significance of these sediments received little attention. In this paper we draw on the results of a recent sedimentological study based on > 100 drillings that spans the Pleistocene sequence, and present new biostratigraphical (pollen, foraminifera, ostracods) data, all revealing a complex history of deposition. The record includes evidence of the development of incised-valley systems that were initiated in the late Middle and Late Pleistocene. Five phases of fluvial incision can be identified. The majority of the infills are deposited in an estuarine environment that passes into a fluvial environment land inward, except the Weichselian infill which has a predominant fluvial origin. The greatest part of the most seaward located zone of the western coastal plain was free of valley incisions, there, shallow marine sediments built up the record. Local biostratigraphical investigations provide a timeframe. The result is placed in a regional context.
Resumo:
With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.
Resumo:
Export of Fijian papaya (Carica papaya) fruit to destinations such as New Zealand has increased significantly over the last several years. Shipment by sea rather than air is the preferred method, given the capacity for larger volumes and reductions in cost. Long shipping times, however, can compromise fruit quality, although the use of modified atmosphere packaging (MAP) may provide a viable solution for extending fruit storage life. In a collaborative ACIAR project, Australian and Fijian researchers investigated the potential of using MAP to extend storage life of a Fijian papaya ('Fiji Red') fruit based on simulated sea transport conditions. Fruit were packed in one of three MAP environments within cartons, consisting of either a (1) Low Density Polyethylene (LDPE) bag with 10 g of KMnO4, (2) Polyamide Film (PF) bag with macro-perforations or (3) without a bag (control fruit). Fruit were held for 1, 2 or 3 weeks at 10°C before being unpacked, ripened and assessed for quality. On day 6 after outturn, fruit with the highest overall quality were those held in LDPE bags. LDPE fruit generally coloured up faster at outturn than PF or control fruit, had less overall moisture loss and scored high in flavour. Headspace carbon dioxide and oxygen concentrations within the LDPE bags were also near recommended levels for maintaining optimum storage-life quality. The LDPE bag provided the most suitable conditions for long term storage of fresh papaya fruit and is therefore the recommended MAP type for use with sea freight export out of Fiji.
Resumo:
Caption title.