905 resultados para Pictograph Cave
Resumo:
The purpose of this thesis was to examine the ways in which the fantasy genre is ideally positioned for discussing social issues, such as invisibility and liminality. Elements associated with invisibility, such as poverty, homelessness, and alienation, were explored within two novels by Neil Gaiman: Neverwhere and American Gods. Gaiman's application of these elements within the fantasy genre were juxtaposed with samples from other genres, including Plato's 'Parable of the Cave' and Jennifer Toth's The Mole People. Another aim was to contrast Gaiman's use of the 'beast in the sewer' metaphor with previous renditions of the myth, demonstrating how fantasy, paradoxically, offers a unique and privileged view of reality.
Resumo:
Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.
Resumo:
Switchgrass (Panicum virgatum L.) is a perennial grass holding great promise as a biofuel resource. While Michigan’s Upper Peninsula has an appropriate land base and climatic conditions, there is little research exploring the possibilities of switchgrass production. The overall objectives of this research were to investigate switchgrass establishment in the northern edge of its distribution through: investigating the effects of competition on the germination and establishment of switchgrass through the developmental and competitive characteristics of Cave-in-Rock switchgrass and large crabgrass (Digitaria sanguinalis L.) in Michigan’s Upper Peninsula; and, determining the optimum planting depths and timing for switchgrass in Michigan’s Upper Peninsula. For the competition study, a randomized complete block design was installed June 2009 at two locations in Michigan’s Upper Peninsula. Four treatments (0, 1, 4, and 8 plants/m2) of crabgrass were planted with one switchgrass plant. There was a significant difference between switchgrass biomass produced in year one, as a function of crabgrass weed pressure. There was no significant difference between the switchgrass biomass produced in year two versus previous crabgrass weed pressure. There is a significant difference between switchgrass biomass produced in year one and two. For the depth and timing study, a completely randomized design was installed at two locations in Michigan’s Upper Peninsula on seven planting dates (three fall 2009, and four spring 2010); 25 seeds were planted 2 cm apart along 0.5 m rows at depths of: 0.6 cm, 1.3 cm, and 1.9 cm. Emergence and biomass yields were compared by planting date, and depths. A greenhouse seeding experiment was established using the same planting depths and parameters as the field study. The number of seedlings was tallied daily for 30 days. There was a significant difference in survivorship between the fall and spring planting dates, with the spring being more successful. Of the four spring planting dates, there was a significant difference between May and June in emergence and biomass yield. June planting dates had the most percent emergence and total survivorship. There is no significant difference between planting switchgrass at depths of 0.6 cm, 1.3 cm, and 1.9 cm. In conclusion, switchgrass showed no signs of a legacy effect of competition from year one, on biomass production. Overall, an antagonistic effect on switchgrass biomass yield during the establishment period has been observed as a result of increasing competing weed pressure. When planting switchgrass in Michigan’s Upper Peninsula, it should be done in the spring, within the first two weeks of June, at any depth ranging from 0.6 cm to 1.9 cm.
Resumo:
In the vicinity of Limespur, Montana, a siding along the Northern Pacific Railroad near Whitehall, Montana, occurs a characteristic type of arkose where in many small red mineral grains are distributed throughout the rock mass. It is in this respect that this arkose differs from other arkoses in the surrounding region.
Resumo:
Gypsum deposits are widespread geographically and are in many geologic formations. Ordinarily their character and origin, for the most part sedimentary, are not difficult to ascertain. Near Lewis and Clark Caverns, east of Whitehall, Montana, occurs a deposit of gypsum unique in many respects.
Resumo:
To better acquaint seniors in Geology and mining with actual field practice, the Montana School of Mines offer a course in Geologic Field Mapping, during the three weeks preceding the opening of the fall semester. The first two weeks are spent in actual field mapping of the geologic formations near Whitehall, Montana, while the third week is spent back on the campus compiling data and finishing maps started in the field.
Resumo:
We present a high performance-yet low cost-system for multi-view rendering in virtual reality (VR) applications. In contrast to complex CAVE installations, which are typically driven by one render client per view, we arrange eight displays in an octagon around the viewer to provide a full 360° projection, and we drive these eight displays by a single PC equipped with multiple graphics units (GPUs). In this paper we describe the hardware and software setup, as well as the necessary low-level and high-level optimizations to optimally exploit the parallelism of this multi-GPU multi-view VR system.
Resumo:
Lake Van sediment cores from the Ahlat Ridge and Northern Basin drill sites of the ICDP project PALEOVAN contain a wealth of information about past environmental processes. The sedimentary sequence was dated using climatostratigraphic alignment, varve chronology, tephrostratigraphy, argon-argon single-crystal dating, radiocarbon dating, magnetostratigraphy, and cosmogenic nuclides. Based on the lithostratigraphic framework, the different age constraints are compiled and a robust and precise chronology of the 600,000 year-old Lake Van record is constructed. Proxy records of total organic carbon content and sediment color, together with the calcium/potassium-ratios and arboreal pollen percentages of the 174-meter-long Ahlat Ridge record, mimic the Greenland isotope stratotype (NGRIP). Therefore, the proxy records are systematically aligned to the onsets of interstadials reflected in the NGRIP or synthesized Greenland ice-core stratigraphy. The chronology is constructed using 27 age control points derived from visual synchronization with the GICC05 timescale, an absolutely-dated speleothem record (e.g., Hulu, Sanbao, Linzhu cave) and the Epica Dome C timescale. In addition, the uppermost part of the sequence is complemented with four ages from Holocene varve chronology and two calibrated radiocarbon ages. Furthermore, nine argon-argon ages and a comparison of the relative paleointensity record of the magnetic field with reference curve PISO-1500 confirm the accuracy of the age model. Also the identification of the Laschamp event via measurements of 10Be in the sediment confirms the presented age model. The chronology of the Ahlat Ridge record is transferred to the 79-meter-long event-corrected composite record from the Northern Basin and supplemented by additional radiocarbon dating on organic marco-remains. The basal age of the Northern Basin record is estimated at ~90 ka. The variations of the time series of total organic carbon content, the Ca/K ratio, and the arboreal pollen percentages illustrate that the presented chronology and paleoclimate data are suited for reconstructions and modeling of the Quaternary and Pleistocene climate evolution in the Near East at millennial timescales. Furthermore, the chronology of the last 250 kyr can be used to test other dating techniques.
Resumo:
This study deals with faunal finds from the Swiss Paleolithic, especially from the Late Glacial. Faunal assemblages from archeological sites as well as off-site finds dated by scientific means are included. In the middle of the Oldest Dryas the large glacial species – mammoth, rhinoceros, cave bear, musk ox – become extinct. During the Early Bølling the last arctic species disappear, and are succeeded by animals like red deer and elk, preferring a moderate climate. From the middle of the Allerød, species typical of a denser forest (roe deer and wild boar) are very frequent.
Resumo:
In the tropics, geochemical records from stalagmites have so far mainly been used to qualitatively reconstruct changes in precipitation, but several new methods to reconstruct past temperatures from stalagmite material have emerged recently: i) liquide vapor homogenization of fluid inclusion water ii) noble gas concentrations in fluid inclusion water, iii) the partitioning of oxygen isotopes between fluid inclusion water and calcite, and iv) the abundance of the 13C18O16O(‘clumped’) isotopologue in calcite. We present, for the first time, a direct comparison of these four paleo-thermometers by applying them to a fossil stalagmite covering nearly two glaciale interglacial cycles (Marine Isotope Stages (MIS) 12 e 9) and to two modern stalagmites, all from northern Borneo. The temperature estimates from the different methods agree in most cases within errors for both the old and recent samples; reconstructed formation temperatures of the recent samples match within 2-sigma errors with measured cave temperatures. However, slight but systematic deviations are observed between noble gas and liquide vapor homogenization temperatures. Whereas the temperature sensitivity of fluid inclusion d18O and clumped isotopes is currently debated, we find that the calibration of Tremaine et al. (2011) for fluid inclusion d18O and a synthetic calcite-based clumped isotope calibration (Ziegler et al., in prep.) yield temperature estimates consistent with the other methods. All methods (with the potential exception of clumped isotopes) show excellent agreement on the amplitude of glaciale interglacial temperature change, indicating temperature shifts of 4-5 C°. This amplitude is similar to the amplitude of Mg/Ca-based regional sea surface temperature records, when correcting for sea level driven changes in cave elevation. Our reconstruction of tropical temperature evolution over the time period from 440 to 320 thousand years ago (ka) adds support to the view that climate sensitivity to varying greenhouse forcing is substantial also in the deep tropics.
Resumo:
A geochemical investigation has been conducted of a suite of four sediment cores collected from directly beneath the hydrothermal plume at distances of 2 to 25 km from the Rainbow hydrothermal field. As well as a large biogenic component (>80% CaCO3) these sediments record clear enrichments of the elements Fe, Cu, Mn, V, P, and As from hydrothermal plume fallout but only minor detrital background material. Systematic variations in the abundances of "hydrothermal" elements are observed at increasing distance from the vent site, consistent with chemical evolution of the dispersing plume. Further, pronounced Ni and Cr enrichments at specific levels within each of the two cores collected from closest to the vent site are indicative of discrete episodes of additional input of ultrabasic material at these two near-field locations. Radiocarbon dating reveals mean Holocene accumulation rates for all four cores of 2.7 to 3.7 cm.kyr?1, with surface mixed layers 7 to 10+ cm thick, from which a history of deposition from the Rainbow hydrothermal plume can be deduced. Deposition from the plume supplies elements to the underlying sediments that are either directly hydrothermally sourced (e.g., Fe, Mn, Cu) or scavenged from seawater via the hydrothermal plume (e.g., V, P, As). Holocene fluxes into to the cores' surface mixed layers are presented which, typically, are an order of magnitude greater than "background" authigenic fluxes from the open North Atlantic. One core, collected closest to the vent site, indicates that both the concentration and flux of hydrothermally derived material increased significantly at some point between 8 and 12 14C kyr ago; the preferred explanation is that this variation reflects the initiation/intensification of hydrothermal venting at the Rainbow hydrothermal field at this time - perhaps linked to some specific tectonic event in this fault-controlled hydrothermal setting.
Resumo:
Pan es un dios peculiar en muchos aspectos. Al contrario que los restantes dioses del panteón griego, él no es antropomorfo, sino que tiene patas, cola y cuernos de carnero. Un dios con características tan arcaicas sólo puede sobrevivir confinado a la Arcadia, una región que conserva numerosos arcaísmos religiosos. Sin embargo, a partir del 490 a.C. en que se instaura su culto en Atenas, el dios comienza a cambiar. En su evolución, Pan se asimila cada vez más a Dioniso. El acercamiento entre ambas figuras deja su huella en el mito, pero sobre todo en el culto. Así, un dios que en Arcadia era venerado en santuarios construidos por la mano del hombre, en el resto de Grecia recibe culto en parajes agrestes, fundamentalmente cuevas. No parece casual el hecho de que también fuera de Arcadia la gruta sea el lugar reservado a los cultos mistéricos, incluidos los dionisíacos
Resumo:
Pan es un dios peculiar en muchos aspectos. Al contrario que los restantes dioses del panteón griego, él no es antropomorfo, sino que tiene patas, cola y cuernos de carnero. Un dios con características tan arcaicas sólo puede sobrevivir confinado a la Arcadia, una región que conserva numerosos arcaísmos religiosos. Sin embargo, a partir del 490 a.C. en que se instaura su culto en Atenas, el dios comienza a cambiar. En su evolución, Pan se asimila cada vez más a Dioniso. El acercamiento entre ambas figuras deja su huella en el mito, pero sobre todo en el culto. Así, un dios que en Arcadia era venerado en santuarios construidos por la mano del hombre, en el resto de Grecia recibe culto en parajes agrestes, fundamentalmente cuevas. No parece casual el hecho de que también fuera de Arcadia la gruta sea el lugar reservado a los cultos mistéricos, incluidos los dionisíacos