935 resultados para Physico-chemical analysis
Resumo:
Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.
Resumo:
Nanoparticles (dia ~ 5 - 7 nm) of Bi0.5X0.5(X=Ca,Sr)MnO3 are prepared by polymer assisted sol-gel method and characterized by various physico-chemical techniques. X-ray diffraction gives evidence for single phasic nature of the materials as well as their structures. Mono dispersed to a large extent, isolated nanoparticles are seen in the transmission electron micrographs. High resolution electron microscopy shows the crystalline nature of the nanoparticles. Superconducting quantum interferometer based magnetic measurements from 10K to 300K show that these nanomanganites retain the charge ordering nature unlike Pr and Nd based nanomanganites. The CO in Bi based manganites is thus found to be very robust consistent with the observation that magnetic field of the order of 130 T are necessary to melt the CO in these compounds. These results are supported by electron magnetic resonance measurements.
Resumo:
A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.
Resumo:
The Gibbs energy of mixing for the system Fe3O4-FeAl2O4 was determined at 1573 K using a gas-metal-oxide equilibration technique. Oxide solid solution samples were equilibrated with Pt foils under controlled CO+CO2 gas streams. The equilibrium iron concentration in the foil was determined by chemical analysis. The cation distribution between tetrahedral and octahedral sites in the spinel crystal can be calculated from site-preference energies and used as an alternate method of determining some thermodynamic properties, including the Gibbs energy of mixing. The solvus occurring at low temperatures in the system Fe3C4-FeAl2C4 was used to derive the effect of lattice distortion due to cation size difference on the enthalpy of mixing and to obtain a better approximation to the measured thermodynamic quantities.
Resumo:
The activity of Cr in solid Cr-Mo alloys has been measured at 1873 K using a metal-oxide-gas equilibrium technique. Thin foils of Mo were equilibrated with solid Cr203 under flowing gas mixtures of argon, hydrogen and watervapourof known composition. The equilibrium concentration of Cr in Mo was determined by chemical analysis. These measurements indicate positive deviations from Raoult's law. The activity data obtained in the study at 1873 K are combined with free energy of mixing at 1471 K, calorimetric enthalpy of mixing at 1673 K, and experimental evidence of phase separation at lower temperatures, reported in the literature, to obtain an optimised set of thermodynamic parameters for the Cr-Mosystem in the solid state.
Resumo:
Metal-mold reaction during Ti casting in zircon sand molds has been studied using scanning electron microscope, energy and wave length dispersive analysis of X-rays, X-ray diffraction, microhardness measurements, and chemical analysis. Experimental results suggest that oxides from the mold are not fully leached out by liquid Ti, but oxygen is preferentially transferred to liquid Ti, leaving behind metallic constituents in the mold as lower oxides or intermetallics of Ti. The electron microprobe analysis has revealed the depth profile of contaminants from the mold into the cast Ti metal. The elements Si, Zr and O were found to have diffused to a considerable distance within the Ti metals. A possible mechanism has now been evolved in regard to the reactions that occur during casting of Ti in zircon sand molds.
Resumo:
The tie lines delineating equilibria between different oxides of the Ca-Al-O system and liquid Ca-Al alloy has been determined at 1373 K. Equilibration of the alloy with two adjacent oxide phases in the CaO-Al2O3 pseudo-binary system was established in a closed cell made of iron. Equilibrium oxide phases were confirmed by x-ray analysis and alloy compositions were determined by chemical analysis. The compound 12CaO.7Al2O3 Ca12Al14O33 was found to be a stable phase in equilibrium with calcium alloys. The experimental diagram is consistent with that calculated from the free energies of formation of the oxide phases and activities in liquid Ca-Al alloys at 1373 K reported in the literature.
Resumo:
The phase relations in the system Dy–Mg–Cl at 1073 K have been established by isothermal equilibration and chemical analysis of quenched samples. Liquid Mg-rich alloy was found to be in equilibrium with molten DyCl2. Therefore, DyCl2 can be synthesized by reduction of MgCl2 with excess of metallic Dy at 1073 K. The Gibbs energy of formation of DyCl2 at 1073 K was evaluated by two different methods. From voltammetric determination of decomposition voltage, the upper limit for the standard Gibbs energy of formation of DyCl2 was estimated to be −505(±20) kJ mol−1. A value of −543(±10) kJ mol−1 was deduced from phase relations using Gibbs–Duhem integration. The value for the standard Gibbs energy of DyCl2 indicates that the Dy2+ ion has a potential capability for reducing TiCl4 to metal titanium. At the same time, Mg is a reductant for Dy3+ produced during the reduction of TiCl4. Thus, it is thermodynamically confirmed that reduction of TiCl4 by magnesium using a reaction mediator in the salt phase is feasible.
Resumo:
The relations for the growth and consumption rates of a layer with finite thickness as an end member and the product phases in the interdiffusion zone are developed. We have used two different methodologies, the diffusion based and the physico-chemical approach to develop the same relations. We have shown that the diffusion based approach is rather straightforward; however, the physico-chemical approach is much more versatile than the other method. It was found that the position of the marker plane becomes vague in the second stage of the interdiffusion process in pure A thin layer/B couple, where two phases grow simultaneously.
Resumo:
Ethylene gas is burnt and the carbon soot particles are thermophoretically collected using a home-built equipment where the fuel air injection and intervention into the 7.5-cm long flame are controlled using three small pneumatic cylinders and computer-driven controllers. The physical and mechanical properties and tribological performance of the collected soot are compared with those of carbon black and diesel soot. The crystalline structures of the nanometric particles generated in the flame, as revealed by high-resolution transmission electron studies, are shown to vary from the flame root to the exhaust. As the particle journeys upwards the flame, through a purely amorphous coagulated phase at the burner nozzle, it leads to a well-defined crystalline phase shell in the mid-flame zone and to a disordered phase consisting of randomly distributed short-range crystalline order at the exhaust. In the mid-flame region, a large shell of radial-columnar order surrounds a dense amorphous core. The hardness and wear resistance as well as friction coefficient of the soot extracted from this zone are low. The mechanical properties characteristics of this zone may be attributed to microcrystalline slip. Moving towards the exhaust, the slip is inhibited and there is an increase in hardness and friction compared to those in the mid-flame zone. This study of the comparison of flame soot to carbon black and diesel soot is further extended to suggest a rationale based on additional physico-chemical study using micro-Raman spectroscopy.
Resumo:
The effects of Mo, Ti, and Zr on the diffusion and growth of the Nb(X)Si-2 and Nb(X)(5)Si-3 phases in an Nb(X)-Si system are analyzed. The integrated diffusion coefficients are determined from diffusion couple experiments and compared with the data previously calculated in a binary Nb-Si system. The growth rates of both phases are affected by the addition of Mo and Zr, whereas the addition of Ti has no effect. The atomic mechanism of diffusion is also discussed based on the crystal structure and the possible changes in the defect concentrations due to alloying. Finally, the growth mechanism of the phases is discussed on the basis of a physico-chemical approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The magnitude and volume of transportation of petroleum products (both crude and finished products) has necessitated constructing dedicated pipelines from the refineries to the various consumer centers. The present status and scenario of pipeline transportation has been briefly described. Published literatures covering geotechnical engineering aspects, especially corrosion studies for pipelines are scanty. Available literature has been summarized. Main topic includes soil resistivity survey, classification based on resistivity and various parameters of chemical analysis. Detailed analysis has been carried out from the data generated through field investigation and laboratory tests on soil samples obtained from different locations along the two selected pipeline route where they are to be constructed. Typical data has been analysed for aggressivity. Summary of aggressivity analysis has been presented for the two field cases and modification has been suggested for existing practice.
Resumo:
We report a low temperature synthesis of layered Na0×20CoO2 and K0×44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LixCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0×20CoO2 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting.
Resumo:
Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10 ppb. When the non-redox active PDDA is replaced by the redoxactive Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.