999 resultados para Phi (Microbiology)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymerase chain reaction screening revealed that Armigeres subalbatus (Coquillett), a vector of filariasis, was infected with the intracellular bacteria Wolbachia. Laboratory crosses between infected males and uninfected females resulted in less than half the number of offspring than control crosses between uninfected individuals when young (2- to 3-d-old) males were used in the cross. However, incompatibility was lost when old (14- to 17-d-old) males were used. Field-collected females did not show detectable cytoplasmic incompatibility, and this may be because of the age at which males mate in the field. We used head pigment fluorescence levels to age field males collected from mating swarms, and found that 25-63% of swarming males were older than 13 d. Male age may be one factor influencing the observed low levels of cytoplasmic incompatibility detected in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia are intracellular maternally inherited microorganisms that are associated with reproductive abnormalities such as cytoplasmic incompatibility (CI), feminization and parthenogenesis in the various arthropod species they infect. Surveys indicate that these bacteria infect more than 16% of all insect species as well as isopods, mites and nematodes, making Wolbachia one of the most ubiquitous parasites yet described. However, nothing is known about the interactions of this bacterium with the host's immune system. We studied the expression of inducible antimicrobial markers in the adults of two Wolbachia infected insect species, Drosophila simulans and Aedes albopictus. The lack of available immune markers in the mosquito species led us to clone part of the defensin gene from this species, which was found to be very similar to the other mosquito defensins cloned from Anopheles gambiae and Aedes aegypti. Comparisons of the expression pattern of the antibacterial markers between Wolbachia-infected and cured lines, and also between bacteria-challenged and unchallenged adults indicated that Wolbachia does not either constitutively induce or suppress the transcription of these antibacterial genes. In addition, no difference in the transcription of these genes was found between double and single Wolbachia-infected strains or between strains in which Wolbachia has different tissue tropisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ticks affect human and animal health both directly by their blood feeding and indirectly by transmission of many disease-causing bacteria, such as Rickettsia, Ehrlichia, Borrelia, Coxiella, Cowdria, Anaplasma, Aegyptionella, and Tularemia, as well as many viruses (Piesman and Gage, 1996). In addition to these infectious agents, ticks harbor bacterial endosymbionts, such as Wolbachia persica, which was first isolated from the soft tick now classified as Argus arboreus (Suitor and Weiss, 1961).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular bacteria of the genus Wolbachia were first discovered in mosquitoes in the 1920s. Their superficial similarity to pathogenic rickettsia initially raised interest in them as potential human pathogens. However, injection experiments with mice showed that they were non-pathogenic, and they were subsequently classified as symbionts of insects. Until the 1970s, Wolbachia was considered to infect a limited number of species of mosquitoes. It is now clear that Wolbachia is an extremely common intracellular agent of invertebrates, infecting nearly all the major groups of arthropods and other terrestrial invertebrates. Its wide host range and abundance can be attributed partly to the unusual phenotypes it exerts on the host it infects. These include the induction of parthenogenesis (the production of female offspring from unmated mothers) in certain insects, the feminization of genetic male crustaceans to functional phenotypic females, and the failure of fertilization in hosts when males and females have a different infection status (cytoplasmic incompatibility). All of these phenotypes favor maternal transmission of the intracellular Wolbachia. In the last year, Wolbachia has also been shown to be a widespread symbiont of filarial nematodes. It appears that Wolbachia is needed by the adult worm for normal fertility, indicating that Wolbachia is behaving like a classic mutualist in this case. This discovery exemplifies that the extent of the host range of Wolbachia and its associated phenotypes is still far from fully understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously undescribed mosquito densovirus was detected in colonies of Aedes aegypti and Ae. albopictus from Thailand, using a polymerase chain reaction (PCR)-based assay. Phylogenetic analysis of this virus showed it to be most closely related to ADNV isolated from Russian Ae. aegypti. Both Aedes species were susceptible to oral infection with the Thai-strain virus. Larval mortality for Ae. albopictus was higher (82%) than for Ae. aegypti (51%). Aedes aegypti were able to transmit the virus vertically to a high (58%) proportion of G1 progeny, and the virus was maintained persistently for up to six generations. A PCR survey of adult Ae. aegypti and Ae. albopictus in Thailand indicated that only Ae. aegypti are infected in the field, with an overall prevalence of 44%. Densovirus infection in adult Ae. aegypti showed distinct seasonal variation. The Thai strain densovirus may play a role in structuring Ae. albopictus and Ae. aegypti populations in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies were undertaken to determine if replication-deficient Semliki Forest virus expression vectors could be successfully used to express foreign gene constructs in insect cell lines. Using green fluorescent protein (GFP) as a marker we recorded infection levels of nearly 100% in the Aedes albopictus cell lines C6/36 and Aa23T, as well as in the Ae. aegypti cell line MOS20. The virus was capable of infecting an Anopheles gambiae cell line MOS55. The amount of GFP protein produced in each cell line was quantified. Northern analysis of viral transcription revealed the presence of novel transcripts in Aa23T, C6/36, and MOS55 cell lines, but not in the BHK or MOS20. The initial characterization of these transcripts is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dnaA region of Wolbachia, an intracellular bacterial parasite of insects, is unique. A glnA cognate was found upstream of the dnaA gene, while neither of the two open reading frames detected downstream of dnaA has any homologue in the database. This unusual gene arrangement may reflect requirements associated with the unique ecological niche this agent occupies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia pipientis is an intracellular bacterial parasite of arthropods that enhances its transmission by manipulating host reproduction, most commonly by inducing cytoplasmic incompatibility. The discovery of isolates with modified cytoplasmic incompatibility phenotypes and others with novel virulence properties is an indication of the potential breadth of evolutionary strategies employed by Wolbachia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila simulans strains infected with three different Wolbachia strains were generated by experimental injection of a third symbiont into a naturally double-infected strain. This transfer led to a substantial increase in total Wolbachia density in the host strain. Each of the three symbionts was stably transmitted in the presence of the other two. Triple-infected males were incompatible with double-infected females. No evidence was obtained for interference between modification effects of the different Wolbachia strains in males. Some incompatibility was observed between triple-infected males and females. However, this incompatibility reaction is not a specific property of triple-infected flies, because it was also observed in double-infected strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia are intracellular microorganisms that form maternally-inherited infections within numerous arthropod species. These bacteria have drawn much attention, due in part to the reproductive alterations that they induce in their hosts including cytoplasmic incompatibility (CI), feminization and parthenogenesis. Although Wolbachia's presence within insect reproductive tissues has been well described, relatively few studies have examined the extent to which Wolbachia infects other tissues. We have examined Wolbachia tissue tropism in a number of representative insect hosts by western blot, dot blot hybridization and diagnostic PCR. Results from these studies indicate that Wolbachia are much more widely distributed in host tissues than previously appreciated. Furthermore, the distribution of Wolbachia in somatic tissues varied between different Wolbachia/host associations. Some associations showed Wolbachia disseminated throughout most tissues while others appeared to be much more restricted, being predominantly limited to the reproductive tissues. We discuss the relevance of these infection patterns to the evolution of Wolbachia/host symbioses and to potential applied uses of Wolbachia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.