993 resultados para Phenol degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 4 wt% is developed by incorporating latex compounding with self-assembly techniques. The SiO2 nanoparticles are homogenouslydistributed throughout the NR matrix as spherical nano-clusters with an average size of 75 nm. In comparison with the host NR, the thermal resistance of the nanocomposite is significantly improved. The degradation temperatures (T), reaction activation energy(E), and reaction order (n) of the nanocomposite are markedly higher than those of the pure NR, due to significant retardant effect of the SiO2 nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automotive is one of the major manufacturing industries in Australia that requires extensive reliability test for the components used in vehicles. To achieve a shorter time-to-market and a highly reliable product while reducing the amount of physical prototyping, there is a growing need for better understanding on the effect that the design parameters have on the degradation of the product. This paper presents comprehensive descriptions of applying Artificial Neural Network (ANN) to capture the relationships between design and degradation. Consequently, two models of different practical significance are created as the result of the work. The vision of the models is to be used by the testers and designers as a guideline in design evaluation, so that time-consuming and expensive iterations of the product developmental cycle can be reduced substantially. The degradation of the folding force of a mechanical system is used to illustrate our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermooxidative degradation of poly (vinyl alcohol)/silica (PVA/SiO2) nanocomposite prepared with self-assembly monolayer (SAM) technique is investigated by using a thermogravimetry (TG) and Fourier transform infrared spectroscopy coupled thermogravimetry (FTIR/TG). The results show that although the thermooxidative degradation process of prepared nanocomposite is similar to that of the pure PVA, its thermooxidative stability has been greatly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of self-assembled poly(vinyl alcohol)/silica (PVA/SiO2) nanocomposites is investigated with atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the SiO2 nanoparticles are homogenously distributed throughout the PVA matrix in a form of spherical nano-cluster. The average size of the SiO2 clusters is below 50 nm at the low contents (SiO2 ≤ 5 wt%), while particle aggregations are clearly observed and their average size markedly increases to 110 nm when 10 wt% SiO2 is loaded. The thermogravimetric analysis (TGA) shows that the nanocomposite significantly outperforms the pure PVA in the thermal resistance. By using a multi-heating-rate method, the thermal degradation kinetics of the nanocomposite with a SiO2 content of 5 wt% is compared to the PVA host. The reaction activation energy (E) of the nanocomposite, similar to the pure PVA, is divided into two main stages corresponding to two degradation steps. However, at a given degradation temperature, the nanocomposite presents much lower reaction velocity constants (k), while its E is 20 kJ/mol higher than that of the PVA host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium with a porosity of 75% was fabricated by space-holder sintering through powder metallurgy. The effect of the alkali and heat treatment on the strength of the porous titanium was investigated. Results indicated that the alkali and heat treatment led to a significant decrease in the strength of the porous titanium, whichwas causedby the degradation due to corrosion of the struts of the porous titanium with a layer of the reaction products, grain pullout and micro-cracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the preparation and characterization of titanium dioxide (TiO2)-based non-film catalysts, reactor design and their utilization in a hybrid dynamic degradation of acetone and toluene. The behaviours of deactivation and regeneration of catalysts are explored as well. The regression equations of conversion rate in differing operating modes are concluded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ageing can lead to the degradation of the tensile properties of natural rubber. The ageing process causes changes in the polymer segmental motion as well as the chemical structure, both of which can be monitored using nuclear magnetic resonance (NMR) spectroscopy. This work demonstrates that NMR can quantify rubber degradation due to ageing, and also that relatively simple NMR equipment can be used. This simpler equipment can be made portable and so could give a simple and fast indication of the condition of rubber in service. The 1H NMR transverse relaxation time, T2, and the 13C NMR spectrum using cross polarization and magic angle spinning (CP MAS) for samples taken at various levels of a degraded natural rubber liner were compared. These experiments showed that, as the level of degradation increased, the 1H NMR transverse relaxation time decreased. The 13C spectra showed considerable peak broadening, indicative of decreased mobility with increased level of degradation as well as the presence of degradation products. Further investigations using lower powered NMR equipment to measure the 1H NMR transverse relaxation times of two different series of natural rubbers were also performed. This work has shown that this simpler method is also sensitive to structural and mechanical property changes in the rubber. This method of monitoring rubber degradation could lead to the non-destructive use of NMR to determine the condition of a part in service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Threshold models are becoming important in determining the ecological consequences of our actions within the environment and have a key role in setting bounds on targets used by natural resource managers. We have been using thresholds and related concepts adapted from the multiple stable-states literature to model ecosystem response in the Coorong, the estuary for Australia’s largest river. Our modelling approach is based upon developing a state-and-transition model, with the states defined by the biota and the transitions defined by a classification and regression tree (CART) analysis of the environmental data for the region. Here we explore the behaviour of thresholds within that model. Managers tend to plan for a set of often arbitrarily-derived thresholds in their natural resource management. We attempt to assess how the precision afforded by analyses such as CART translates into ecological outcomes, and explicitly trial several approaches to understanding thresholds and transitions in our model and how they might be relevant for management. We conclude that the most promising approach would be a mixture of further modelling (using past behaviour to predict future degradation) in conjunction with targeted experiments to confirm the results. Our case study of the Coorong is further developed, particularly for the modelling stages of the protocol, to provide recommendations to improve natural resource management strategies that are currently in use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl− channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl− currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report microphase separation induced by competitive hydrogen bonding interactions in double crystalline diblock copolymer/homopolymer blends of poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL) and poly(4-vinyl phenol) (PVPh). The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein both PEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer/homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogenous phase at 60 wt% PVPh and above. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer (1-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PET fabric is coated with conducting polypyrrole (PPy) by oxidative polymerization from an aqueous solution of Py using ferric chloride hexahydrate (FeCl3) as oxidant and p-toluene sulphonate (pTSA) as dopant. The optimum concentrations for Py, FeCl3 and pTSA were found to be 0.11, 0.857 and 0.077 mol/l respectively, which yielded a conductive fabrics with resistivity as low as 72 Ω/sq. PPy fabric gained resistivity less than one order of magnitude when aged for 18 months at room temperature. The stabilizing effect of the dopant pTSA against thermal degradation was demonstrated; the undoped samples reached resistivity of around 40 kΩ, whereas doped samples reached less than 2 kΩ at the same temperature and time.