977 resultados para Phase stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O2 plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings. © 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled plasmas with external at coil configurations. The measurements also reveal a weak azimuthal dependence of the global plasma parameters at low values of the input RF power, which was earlier predicted theoretically. The azimuthal dependence of the global plasma parameters vanishes at high input RF powers. Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing applications and surface engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite (HA) coatings have numerous applications in orthopedics and dentistry, owing to their excellent ability to promote stronger implant fixation and faster bone tissue ingrowth and remodeling. Thermal plasma spray and other plasma-assisted techniques have recently been used to synthesize various calcium phosphate-based bioceramics. Despite notable recent achievements in the desired stoichiometry, phase composition, mechanical, structural, and bio-compatible properties, it is rather difficult to combine all of the above features in a single coating. For example, many existing plasma-sprayed HA coatings fall short in meeting the requirements of grain size and crystallinity, and as such are subject to enhanced resorption in body fluid. On the other hand, relatively poor interfacial bonding and stability is an obstacle to the application of the HA coatings in high load bearing Ti6Al4V knee joint implants. Here, we report on an alternative: a plasma-assisted, concurrent, sputtering deposition technique for high performance biocompatible HA coatings on Ti6Al4V implant alloy. The plasma-assisted RF magnetron co-sputtering deposition method allows one to simultaneously achieve most of the desired attributes of the biomimetic material and overcome the aforementioned problems. This article details the film synthesis process specifications, extensive analytical characterization of the material's properties, mechanical testing, simulated body fluid assessments, biocompatibility and cytocompatibility of the HA-coated Ti6Al4V orthopedic alloy. The means of optimization of the plasma and deposition process parameters to achieve the desired attributes and performance of the HA coating, as well as future challenges in clinical applications are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm2. The atomic structure of the SiOCH films appears to be a mixture the amorphous SiO2-like and the partially polycrystalline SiC-like phases. Results of the infra-red spectroscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40±2 mW) photoluminescence (PL) has been studied at room temperatures in the visible (1.8 eV - 3.1 eV) subrange of photon spectrum. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 - 2.9 eV) are observed. Intensities of the both bands are changed monotonically with RF power, whereas the bandwidth of ∼0.1 eV remains almost invariable. It is likely that the above lines are dumped by the non-radiative recombination involving E1-like centres in the amorphous-nanocrystalline SiC-like phases. Such explanation of the PL intensity dependences on the RF power density is supported by results of experimental studies of defect states spectrum in bandgap of the SiOCH films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a modulation and controller design method for paralleled Z-source inverter systems applicable for alternative energy sources like solar cells, fuel cells, or variablespeed wind turbines with front-end diode rectifiers. A modulation scheme is designed based on simple shoot-through principle with interleaved carriers to give enhanced ripple reduction in the system. Subsequently, a control method is proposed to equalize the amount of power injected by the inverters in the grid-connected mode and also to provide reliable supply to sensitive loads onsite in the islanding mode. The modulation and controlling methods are proposed to have modular independence so that redundancy, maintainability, and improved reliability of supply can be achieved. The performance of the proposed paralleled Z-source inverter configuration is validated with simulations carried out using Matlab/Simulink/Powersim. Moreover, a prototype is built in the laboratory to obtain the experimental verifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel three-phase to single-phase matrix converter (TSMC) based bi-directional inductive power transfer (IPT) system for vehicle-to-grid (V2G) applications. In contrast to existing techniques, the proposed technique which employs a TSMC to drive an 8th order high frequency resonant network, requires only a single-stage power conversion process to facilitate bi-directional power transfer between electric vehicles (EVs) and a three-phase utility power supply. A mathematical model is presented to demonstrate that both magnitude and direction of power flow can be controlled by regulating either relative phase angles or magnitudes of voltages generated by converters. The viability of the proposed mathematical model is verified using simulated results of a 10 kW bi-directional IPT system and the results suggest that the proposed system is efficient, reliable and is suitable for high power applications which require contactless power transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved Phase-Locked Loop (PLL) for extracting phase and frequency of the fundamental component of a highly distorted grid voltage is presented. The structure of the single-phase PLL is based on the Synchronous Reference Frame (SRF) PLL and uses an All Pass Filter (APF) to generate the quadrature component from the single phase input voltage. In order to filter the harmonic content, a Moving Average Filter (MAF) is used, and performance is improved by designing a lead compensator and also a feed-forward compensator. The simulation results are compared to show the improved performance with feed-forward. In addition, the frequency dependency of MAF is dealt with by a proposed method for adaption to the frequency. This method changes the window size based on the frequency on a sample-by-sample basis. By using this method, the speed of resizing can be reduced in order to decrease the output ripples caused by window size variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose We examined the age-dependent alterations and longitudinal course of subbasal nerve plexus (SNP) morphology in healthy individuals. Methods Laser-scanning corneal confocal microscopy, ocular screening, and health and metabolic assessment were performed on 64 healthy participants at baseline and at 12-month intervals for 3 years. At each annual visit, eight central corneal images of the SNP were selected and analyzed using a fully-automated analysis system to quantify corneal nerve fiber length (CNFL). Two linear mixed model approaches were fitted to examine the relationship between age and CNFL, and the longitudinal changes of CNFL over three years. Results At baseline, mean age was 51.9 ± 14.7 years. The cohort was sex balanced (χ2 = 0.56, P = 0.45). Age (t = 1.6, P = 0.12) and CNFL (t = -0.50, P = 0.62) did not differ between sexes. A total of 52 participants completed the 36-month visit and 49 participants completed all visits. Age had a significant effect on CNFL (F1,33 = 5.67, P = 0.02) with a linear decrease of 0.05 mm/mm2 in CNFL per one year increase in age. No significant change in CNFL was observed over the 36-month period (F1,55 = 0.69, P = 0.41). Conclusions The CNFL showed a stable course over a 36-month period in healthy individuals, although there was a slight linear reduction in CNFL with age. The findings of this study have implications for understanding the time-course of the effect of pathology and surgical or therapeutic interventions on the morphology of the SNP, and serves to confirm the suitability of CNFL as a screening/monitoring marker for peripheral neuropathies.