988 resultados para Petrarca, Francesco, 1304-1374
Resumo:
Marine dinoflagellates of the genera Alexandrium are well known producers of the potent neurotoxic paralytic shellfish toxins that can enter the food web and ultimately present a serious risk to public health in addition to causing huge economic losses. Direct coastal monitoring of Alexandrium spp. can provide early warning of potential shellfish contamination and risks to consumers and so a rapid, sensitive, portable and easy-to-use assay has been developed for this purpose using an innovative planar waveguide device. The disposable planar waveguide is comprised of a transparent substrate onto which an array of toxin-protein conjugates is deposited, assembled in a cartridge allowing the introduction of sample, and detection reagents. The competitive assay format uses a high affinity antibody to paralytic shellfish toxins with a detection signal generated via a fluorescently labelled secondary antibody. The waveguide cartridge is analysed by a simple reader device and results are displayed on a laptop computer. Assay speed has been optimised to enable measurement within 15 min. A rapid, portable sample preparation technique was developed for Alexandrium spp. in seawater to ensure analysis was completed within a short period of time. The assay was validated and the LOD and CCß were determined as 12 pg/mL and 20 pg/mL respectively with an intra-assay CV of 11.3% at the CCß and an average recovery of 106%. The highly innovative assay was proven to accurately detect toxin presence in algae sampled from the US and European waters at an unprecedented cell density of 10 cells/L. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Several studies with erythropoiesis-stimulating agents claim that maintenance therapy of renal anaemia may be possible at extended dosing intervals; however, few studies were randomized, results varied, and comparisons between agents were absent. We report results of a multi-national, randomized, prospective trial comparing haemoglobin maintenance with methoxy polyethylene glycol-epoetin beta and darbepoetin alfa administered once monthly.
Resumo:
Neprilysin (NEP), also known as membrane metalloendopeptidase (MME), is considered amongst the most important ß-amyloid (Aß)-degrading enzymes with regard to prevention of Alzheimer's disease (AD) pathology. Variation in the NEP gene (MME) has been suggested as a risk factor for AD. We conducted a genetic association study of 7MME SNPs - rs1836914, rs989692, rs9827586, rs6797911, rs61760379, rs3736187, rs701109 - with respect to AD risk in a cohort of 1057 probable and confirmed AD cases and 424 age-matched non-demented controls from the United Kingdom, Italy and Sweden. We also examined the association of these MME SNPs with NEP protein level and enzyme activity, and on biochemical measures of Aß accumulation in frontal cortex - levels of total soluble Aß, oligomeric Aß(1-42), and guanidine-extractable (insoluble) Aß - in a sub-group of AD and control cases with post-mortem brain tissue. On multivariate logistic regression analysis one of the MME variants (rs6797911) was associated with AD risk (P = 0.00052, Odds Ratio (O.R. = 1.40, 95% confidence interval (1.16-1.70)). None of the SNPs had any association with Aß levels; however, rs9827586 was significantly associated with NEP protein level (p=0.014) and enzyme activity (p=0.006). Association was also found between rs701109 and NEP protein level (p=0.026) and a marginally non-significant association was found for rs989692 (p=0.055). These data suggest that MME variation may be associated with AD risk but we have not found evidence that this is mediated through modification of NEP protein level or activity.
Resumo:
Alzheimer's disease (AD) is characterised by the extensive deposition of amyloid beta (Aß) within the parenchyma and vasculature of the brain. It is hypothesised that a dysfunction in Aß degradation and/or its removal from the brain may result in accumulation as plaques. Low density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor shown to be involved in cholesterol metabolism but also the removal of Aß from the brain. Its ability to transport Aß from the brain to the periphery has made it an attractive candidate for involvement in Alzheimer's disease (AD). We have assessed the frequencies of 9 tag- SNPs and the commonly studied synonymous SNP within exon 3 (rs1799986) in a multi-centre AD/control cohort and performed haplotype analysis. We found no evidence from a combined total of 412 controls and 1057 AD patients to support the involvement of LRP-1 variation, including the most commonly studied variant in rs1799986 in conferring genetic susceptibility to increased risk of AD.
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints.
Methods: SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography.
Results: A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005).
Conclusion: Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients.
Resumo:
KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1a (HIF-1a). HIF-1a is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1a. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1a in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1a levels in KNK437-treated cells. This suggested that the absence of HIF-1a in hypoxic cells was not due to the enhanced protein degradation. HIF-1a is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1a mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1a levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.
Resumo:
Several growth factors and transcription factors have been reported to play important roles in brown adipocyte differentiation and modulation of thermogenic gene expression, especially the expression of UCP1. In this study, we focused on KLF11 and KLF15, which were expressed highly in brown adipose tissue. Our data demonstrated that KLF11 and KLF15 interacted directly with the UCP1 promoter using GC-box and GT-boxes, respectively. Co-transfection of KLF11 and KLF15 in the mesenchymal stem cell line muBM3.1 during brown adipocyte differentiation enhanced the expression level of UCP1. KLF11, but not KLF15, was essential for UCP1 expression during brown adipocyte differentiation of muBM3.1.
Resumo:
Protein interactions play key roles throughout all subcellular compartments. In the present paper, we report the visualization of protein interactions throughout living mammalian cells using two oligomerizing MV (measles virus) transmembrane glycoproteins, the H (haemagglutinin) and the F (fusion) glycoproteins, which mediate MV entry into permissive cells. BiFC (bimolecular fluorescence complementation) has been used to examine the dimerization of these viral glycoproteins. The H glycoprotein is a type II membrane-receptor-binding homodimeric glycoprotein and the F glycoprotein is a type I disulfide-linked membrane glycoprotein which homotrimerizes. Together they co-operate to allow the enveloped virus to enter a cell by fusing the viral and cellular membranes. We generated a pair of chimaeric H glycoproteins linked to complementary fragments of EGFP (enhanced green fluorescent protein)--haptoEGFPs--which, on association, generate fluorescence. Homodimerization of H glycoproteins specifically drives this association, leading to the generation of a fluorescent signal in the ER (endoplasmic reticulum), the Golgi and at the plasma membrane. Similarly, the generation of a pair of corresponding F glycoprotein-haptoEGFP chimaeras also produced a comparable fluorescent signal. Co-expression of H and F glycoprotein chimaeras linked to complementary haptoEGFPs led to the formation of fluorescent fusion complexes at the cell surface which retained their biological activity as evidenced by cell-to-cell fusion.
Resumo:
The loading of the photosensitisers meso-Tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP), methylene blue (MB) and IMP with sodium dodecyl sulphate (SDS) into and release from hydrogels composed of the polyelectrolyte poly(methyl vinyl ether-co-maleic acid) crosslinked in a 2:1 ratio with PEG 10,000 were investigated as a potential rapid photodynamic antimicrobial chemotherapy (PACT) treatment for infected wounds using iontophoresis as a novel delivery method. Photosensitiser uptake was very high; (% TMP uptake; 95.53-96.72%) (% MB uptake; 90.58-93.26%) and was PMVE/MA concentration independent, whilst SDS severely limited TMP uptake (5.93-8.75%). Hydrogel hardness, compressibility and adhesiveness on the dermal surface of neonate porcine skin increased with PMVE/MA concentration and were significantly increased with SDS.
The ionic conductivities of the hydrogels increased with PMVE/MA concentration. Drug release was PMVE/MA concentration independent, except for drug release under iontophoteric conditions for MB and TMP (without SDS). In just 15 min, the mean% drug concentrations released of TMP, TMP (with SDS) and MB using an electric current ranged from 22.30 to 64.72 mu gml(-1), 6.37-4.59 mu gml(-1) and 11.73-36.57 mu gml(-1) respectively. These concentrations were in excess of those required to induce complete kill of clinical strains of meticillin-resistant Staphylococcus aureus and Burkholderia cepacia. Thus these results support our contention that the iontophoteric delivery of IMP and MB using anti-adherent, electrically-responsive, PEG-crosslinked PMVE/MA hydrogels are a potential option in the rapid PACT treatment of infected wounds. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Besides making contact with an approaching ball at the proper place and time, hitting requires control of the effector velocity at contact. A dynamical neural network for the planning of hitting movements was derived in order to account for both these requirements. The model in question implements continuous required velocity control by extending the Vector Integration To Endpoint model while providing explicit control of effector velocity at interception. It was shown that the planned movement trajectories generated by the model agreed qualitatively with the kinematics of hitting movements as observed in two recent experiments. Outstanding features of this comparison concerned the timing and amplitude of the empirical backswing movements, which were largely consistent with the predictions from the model. Several theoretical implications as well as the informational basis and possible neural underpinnings of the model were discussed.
Resumo:
A prototype fluorescent based biosensor has been developed for the antibody based detection of food related contaminants. Its performance was characterised and showed a typical antibody binding signal of 200-2000 mV, a short term noise of 9.1 mV, and baseline slope of -0.016 mV/s over 4 h. Bulk signal detection repeatability (n=23) and reproducibility (n=3) were less than 2.4%CV. The biosensor detection unit was evaluated using two food related model systems proving its ability to monitor both binding using commercial products and inhibition through the development of an assay. This assay development potential was evaluated by observing the biosensor's performance whilst appraising several labelled antibody and glass slide configurations. The molecular interaction between biotin and an anti-biotin antibody was shown to be inhibited by 41% due to the presence of biotin in a sample. A food toxin (domoic acid) calibration curve was produced, with %CVs ranging from 2.7 to 7.8%, and a midpoint of approximately 17 ng/ml with further optimisation possible. The ultimate aim of this study was to demonstrate the working principles of this innovative biosensor as a potential portable tool with the opportunity of interchangeable assays. The biosensor design is applicable for the requirements of routine food contaminant analysis, with respect to performance, functionality and cost. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.
Resumo:
The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with ? radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.
Resumo:
The study aim was to develop and apply an experimental technique to determine the biomechanical effect of polymethylmethacrylate (PMMA) and calcium phosphate (CaP) cement on the stiffness and strength of augmented vertebrae following traumatic fracture. Twelve burst type fractures were generated in porcine three-vertebra segments. The specimens were randomly split into two groups (n=6), imaged using microCT and tested under axial loading. The two groups of fractured specimens underwent a vertebroplasty procedure, one group was augmented with CaP cement designed and developed at Queen's University Belfast. The other group was augmented with PMMA cement (WHW Plastics, Hull, UK). The specimens were imaged and re-tested . An intact single vertebra specimen group (n=12) was also imaged and tested under axial loading. A significant decrease (p<0.01) was found between the stiffness of the fractured and intact groups, demonstrating that the fractures generated were sufficiently severe, to adversely affect mechanical behaviour. Significant increase (p<0.01) in failure load was found for the specimen group augmented with the PMMA cement compared to the pre-augmentation group, conversely, no significant increase (p<0.01) was found in the failure load of the specimens augmented with CaP cement, this is attributed to the significantly (p<0.05) lower volume of CaP cement that was successfully injected into the fracture, compared to the PMMA cement. The effect of the percentage of cement fracture fill, cement modulus on the specimen stiffness and ultimate failure load could be investigated further by using the methods developed within this study to test a more injectable CaP cement.
Resumo:
Procedural pain is associated with poorer neurodevelopment in infants born very preterm (= 32 weeks gestational age), however, the etiology is unclear. Animal studies have demonstrated that early environmental stress leads to slower postnatal growth; however, it is unknown whether neonatal pain-related stress affects postnatal growth in infants born very preterm. The aim of this study was to examine whether greater neonatal pain (number of skin-breaking procedures adjusted for medical confounders) is related to decreased postnatal growth (weight and head circumference [HC] percentiles) early in life and at term-equivalent age in infants born very preterm. Participants were n=78 preterm infants born = 32 weeks gestational age, followed prospectively since birth. Infants were weighed and HC measured at birth, early in life (median: 32 weeks [interquartile range 30.7-33.6]) and at term-equivalent age (40 weeks [interquartile range 38.6-42.6]). Weight and HC percentiles were computed from sex-specific British Columbia population-based data. Greater neonatal pain predicted lower body weight (Wald ?(2)=7.36, P=0.01) and HC (Wald ?(2)=4.36, P=0.04) percentiles at 32 weeks postconceptional age, after adjusting for birth weight percentile and postnatal risk factors of illness severity, duration of mechanical ventilation, infection, and morphine and corticosteroid exposure. However, later neonatal infection predicted lower weight percentile at term (Wald ?(2)=5.09, P=0.02). Infants born very preterm undergo repetitive procedural pain during a period of physiological immaturity that appears to impact postnatal growth, and may activate a downstream cascade of stress signaling that affects later growth in the neonatal intensive care unit.