964 resultados para Peritoneal-macrophages
Resumo:
A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.
Resumo:
An in vitro system allowing the culture of ovine bone marrow-derived macrophages (BMMs) is described. Bone marrow (BM) cells from the sternum of 4- to 9-month-old sheep were cultured in liquid suspension in hydrophobic bags with medium containing 20% autologous serum and 20% fetal calf serum (FCS). Cells with macrophage characteristics were positively selected and increased four- to five-fold between day (d) 0 and d18. Granulocytes and cells of lymphoid appearance including progenitor cells were negatively selected and were diminished 50-fold during this 18-d culture. The addition of macrophage colony-stimulating factor (M-CSF)-containing supernatants to liquid cultures did not significantly improve the yield of BMM in 18-d cultures. In contrast, cell survival at d6 and macrophage cell yield at d18 depended on the concentration and source of serum in the culture medium. FCS and 1:1 mixtures of FCS and autologous serum were superior to autologous serum alone. Analysis of growth requirements of ovine BMMs suggested that they are under more complex growth control than their murine counterparts. In an [3H]thymidine incorporation assay with BM cells collected at different times of culture, d3 or d4 BM cells responded to human recombinant M-CSF, human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), bovine GM-CSF, murine M-CSF or murine M-CSF-containing supernatants, and bovine interleukin 1 beta (IL-1 beta) in decreasing order of magnitude. Likewise, pure murine BMM populations harvested at d6 responded to homologous GM-CSF, IL-3, and human or murine M-CSF. FCS did not stimulate the proliferation of murine BMMs (d6) and of ovine BM cells (d3 or d4). In contrast, ovine BM cells harvested at d12 responded to FCS by proliferation in a dose-dependent manner but failed to proliferate in the presence of human or murine M-CSF or M-CSF-containing supernatants of mouse and sheep fibroblasts containing mouse macrophage growth-promoting activity. Likewise, various cytokine-containing supernatants and recombinant cytokines (murine IL-3, murine and human GM-CSF, murine and bovine IL-1 beta) did not promote proliferation of ovine d12 BM cells to an extent greater than that achieved with 15% FCS alone. Thus, ovine BMM proliferation is under the control of at least two factors acting in sequence, M-CSF and an unidentified factor contained in FCS. The ovine BMM culture system may provide a model for the analysis of myelomonocytopoiesis in vitro.
Resumo:
Ovine bone marrow-derived macrophages (BMM) may express several IgG receptor (Fc gamma receptor; FcR) subsets. To study this, model particles (opsonized erythrocytes; EA), which are selectively handled by certain FcR subsets of human macrophages were used in cross-inhibition studies and found to react in a similar manner with FcR subsets of sheep macrophages. In experiments with monoclonal antibodies against subsets of human FcR, human erythrocytes (E) treated with human anti-D-IgG (anti-D-EAhu) and sheep E treated with bovine IgG1 (Bo1-EAs) were handled selectively by human macrophage FcRI and FcRII, respectively. Rabbit-IgG-coated sheep E (Rb-EAs) were recognized by FcRI, FcRII and possibly also by FcRIII of human macrophages. Anti-D-EAhu, Bo1-EAs and Rb-EAs were also ingested by sheep BMM. Competitive inhibition tests, using various homologous and heterologous IgG isotypes as fluid phase inhibitors and the particles used as FcR-specific tools in man (anti-D-EAhu and Bo1-EAs), revealed a heterogeneity of FcR also in sheep BMM. Thus, ingestion of anti-D-EAhu by ovine BMM was inhibited by low concentrations of competitor IgG from rabbit or man in the fluid phase, but not at all by bovine IgG1, whereas ingestion of Bo1-EAs was inhibited by bovine IgG1. This suggested that anti-D-EAhu were recognized by a FcR subset distinct from that recognizing bovine-IgG1. It was concluded that sheep BMM express functional analogs of human macrophage FcRI and FcRII and that Bo1-EAs and anti-D-EAhu are handled by distinct subsets of BMM FcR. All EAhu tested (EAhu treated with anti-D, sheep IgG1 or sheep IgG2) were ingested to a lower degree than EAs. This inefficient phagocytosis could be enhanced by treatment of EAhu with antiglobulin from the rabbit, suggesting that it is caused by a low degree of activity of opsonizing antibodies rather than special properties of the erythrocytes themselves. Several lines of evidence suggested that both FcR subsets of ovine BMM recognize both ovine IgG1 and IgG2. In contrast, bovine IgG1 reacts with one FcR subset and bovine IgG2 interacts inefficiently with all FcR of ovine BMM.
Resumo:
Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.
Resumo:
The polarization into M1 and M2 macrophages (MΦ) is essential to understand MΦ function. Consequently, the aim of this study was to determine the impact of IFN-γ (M1), IL-4 (M2) and IFN-β activation of MΦ on the susceptibility to genotype 1 and 2 porcine reproductive respiratory syndrome (PRRS) virus (PRRSV) strains varying in virulence. To this end, monocyte-derived MΦ were generated by culture during 72h and polarization was induced for another 24h by addition of IFN-γ, IL-4 or IFN-β. MΦ were infected with a collection of PRRSV isolates belonging to genotype 1 and genotype 2. Undifferentiated and M2 MΦ were highly susceptible to all PRRSV isolates. In contrast, M1 and IFN-β activated MΦ were resistant to low pathogenic genotype 1 PRRSV but not or only partially to genotype 2 PRRSV strains. Interestingly, highly virulent PRRSV isolates of both genotypes showed particularly high levels of infection compared with the prototype viruses in both M1 and IFN-β-treated MΦ (P<0.05). This was seen at the level of nucleocapsid expression, viral titres and virus-induced cell death. In conclusion, by using IFN-γ and IFN-β stimulated MΦ it is possible to discriminate between PRRSV varying in genotype and virulence. Genotype 2 PRRSV strains are more efficient at escaping the intrinsic antiviral effects induced by type I and II IFNs. Our in vitro model will help to identify viral genetic elements responsible for virulence, an information important not only to understand PRRS pathogenesis but also for a rational vaccine design. Our results also suggest that monocyte-derived MΦ can be used as a PRRSV infection model instead of alveolar MΦ, avoiding the killing of pigs.
Resumo:
OBJECTIVE
To evaluate the long term oncological and functional outcomes after readaptation of the dorsolateral peritoneal layer following pelvic lymph node dissection (PLND) and cystectomy .
PATIENTS AND METHODS
A randomised, single-center, single-blinded, two-arm trial was conducted on 200 consecutive cystectomy patients who underwent PLND and cystectomy for bladder cancer (
Resumo:
Our previous gene expression analysis identified phospholipase A2 group IIA (PLA2G2A) as a potential biomarker of ovarian endometriosis. The aim of this study was to evaluate PLA2G2A mRNA and protein levels in tissue samples (endometriomas and normal endometrium) and in serum and peritoneal fluid of ovarian endometriosis patients and control women. One-hundred and sixteen women were included in this study: the case group included 70 ovarian endometriosis patients, and the control group included 38 healthy women and 8 patients with benign ovarian cysts. We observed 41.6-fold greater PLA2G2A mRNA levels in endometrioma tissue, compared to normal endometrium tissue. Using Western blotting, PLA2G2A was detected in all samples of endometriomas, but not in normal endometrium, and immunohistochemistry showed PLA2G2A-specific staining in epithelial cells of endometrioma paraffin sections. However, there were no significant differences in PLA2G2A levels between cases and controls according to ELISA of peritoneal fluid (6.0 ± 4.4 ng/ml, 6.6 ± 4.3 ng/ml; p = 0.5240) and serum (2.9 ± 2.1 ng/ml, 3.1 ± 2.2 ng/ml; p = 0.7989). Our data indicate that PLA2G2A is implicated in the pathophysiology of ovarian endometriosis, but that it cannot be used as a diagnostic biomarker.
Resumo:
Bacterial sepsis is a severe clinical condition, leading to severe sepsis, septic shock, and death. The complex pathophysiology of sepsis is not yet fully understood. Cytokines, released by immune cells such as macrophages, play an important role in the pathophysiology of sepsis. Kupffer cells are the largest population of macrophages in the body. Purinergic signaling, mediated by different nucleosides and nucleotides, and purinergic receptors, has been shown to have various effects on cytokine release, inflammatory processes and the immune system. In our work with in vitro experiments we studied the effect of extracellular nucleotides on the release of TNFα by primary murine Kupffer cells, and the effect of extracellular nucleotides on the phagocytosis of murine RAW 264.7 and human U-937 cell culture macrophages. Secretion of TNFα was measured using ELISA, phagocytosis of bio particles was measured using a plate reader phagocytosis assay and flow cytometry. Our experiments show, that extracellular LPS stimulate release of TNFα in murine Kupffer cells and that extracellular nucleotides inhibit this effect in a dose dependent matter. Our other experiments show phagocytosis of fluorescence labeled bio particles by both macrophage cell lines RAW 264.7 and U-937 in a dose dependent manner. The experiments could not show an effect of extracellular nucleotides on phagocytosis of cell culture macrophages.
Resumo:
Peritoneal transport characteristics and residual renal function require regular control and subsequent adjustment of the peritoneal dialysis (PD) prescription. Prescription models shall facilitate the prediction of the outcome of such adaptations for a given patient. In the present study, the prescription model implemented in the PatientOnLine software was validated in patients requiring a prescription change. This multicenter, international prospective cohort study with the aim to validate a PD prescription model included patients treated with continuous ambulatory peritoneal dialysis. Patients were examined with the peritoneal function test (PFT) to determine the outcome of their current prescription and the necessity for a prescription change. For these patients, a new prescription was modeled using the PatientOnLine software (Fresenius Medical Care, Bad Homburg, Germany). Two to four weeks after implementation of the new PD regimen, a second PFT was performed. The validation of the prescription model included 54 patients. Predicted and measured peritoneal Kt/V were 1.52 ± 0.31 and 1.66 ± 0.35, and total (peritoneal + renal) Kt/V values were 1.96 ± 0.48 and 2.06 ± 0.44, respectively. Predicted and measured peritoneal creatinine clearances were 42.9 ± 8.6 and 43.0 ± 8.8 L/1.73 m2/week and total creatinine clearances were 65.3 ± 26.0 and 63.3 ± 21.8 L/1.73 m2/week, respectively. The analysis revealed a Pearson's correlation coefficient for peritoneal Kt/V of 0.911 and Lin's concordance coefficient of 0.829. The value of both coefficients was 0.853 for peritoneal creatinine clearance. Predicted and measured daily net ultrafiltration was 0.77 ± 0.49 and 1.16 ± 0.63 L/24 h, respectively. Pearson's correlation and Lin's concordance coefficient were 0.518 and 0.402, respectively. Predicted and measured peritoneal glucose absorption was 125.8 ± 38.8 and 79.9 ± 30.7 g/24 h, respectively, and Pearson's correlation and Lin's concordance coefficient were 0.914 and 0.477, respectively. With good predictability of peritoneal Kt/V and creatinine clearance, the present model provides support for individual dialysis prescription in clinical practice. Peritoneal glucose absorption and ultrafiltration are less predictable and are likely to be influenced by additional clinical factors to be taken into consideration.
Resumo:
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Resumo:
Endometriosis is a gynaecological condition with an associated chronic inflammatory response. The ectopic growth of 'lesions', consisting of endometrial cells outside the uterine cavity, stimulates an inflammatory response initiating the activation of macrophages, and resulting in increased cytokine and growth factor concentrations in the peritoneal fluid (PF). Endometriosis‑associated inflammation is chronic and long lasting. In patients with endometriosis, the risk of developing ovarian cancer within 10 years, particularly of the endometrioid or clear cell subtype, is increased 2.5‑4 times. Endometriosis creates a peritoneal environment that exposes the affected endometriotic and the normal ovarian surface epithelial cells to agents that have been suggested to be involved in the pathogenesis of cancer. Concentrations of several cytokines and growth factors were increased in the PF of patients with endometriosis. The ovarian cancer marker, CA125, was one such growth factor; however, this remains to be confirmed. Human epididymis protein 4 (HE4) was detected at high concentrations in patients with ovarian cancer and was identified as the best biomarker for the detection of ovarian cancer. The present study determined the levels of HE4 and CA125 in the peritoneal fluid of 258 patients with and 100 control individuals without endometriosis attending the Department of Obstetrics and Gynaecology, University of Berne (Berne, Switzerland) between 2007 and 2014. The cases were subdivided into groups without hormonal treatment (n=107), or treated with combined oral contraceptives (n=45), continuous gestagens (n=56) or GnRH agonists (n=50). Both of these markers were significantly increased in the non‑treated endometriosis samples compared with the control group. Hormone treatment with either of the three agents mentioned resulted in the concentration of CA125 returning to the control levels and the concentration of HE4 decreasing to below the control levels. CA125, however not HE4, significantly differed between the proliferative and secretory cycle phases. Since HE4 is sensitive to hormonal treatment and robust towards menstrual cycle variation, HE4 is potentially superior to CA125 as an endometriosis marker and therefore has greater potential as a marker for the identification of women at risk of developing ovarian cancer.
Resumo:
Diarrhea is a major cause of morbidity and mortality worldwide. Shigella causes up to 20% of all diarrhea. Gut-level immunity and breast-feeding of infants are important factors in protection against shigellosis. The lumen of the gut is lined with lymphocytes which mediate natural killer cytotoxicity, NKC, and antibody-dependent cellular cytotoxicity, ADCC. NKC and ADCC are extracellular, nonphagocytic leukocyte killing mechanisms, which occur in the absence of complement, without prior antigen stimulation, and without regard to the major histocompatibility complex. In this study, virulent and avirulent shigellae were used as the target cells. Leukocytes from peripheral blood, breast milk, and guinea pig gut-associated tissues were used as effector cells. Adult human peripheral blood mononuclear cells and lymphocytes, but not macrophages or polymorphonuclear leukocytes, mediated NKC and ADCC at an optimal effector to target cell ratio of 100:1 in a 60 minute bactericidal assay. An antiserum dilution of 1:10 was optimal for ADCC. Whole, viable lymphocytes were necessary for cytotoxicity. Lymphocyte NKC, but not ADCC, was greatly enhanced by interferon. Lymphocyte NKC occurred against several virulent strains of S. sonnei and a virulent strain of S. flexneri. ADCC (using immune serum directed against S. sonnei) occurred against virulent S. sonnei, but not against avirulent S. sonnei or virulent S. flexneri. Lymphocyte ADCC was not inhibited by the presence of phenylbutazone or by pretreatment of lymphocytes with anti-HNK serum plus complement. Both adherent and non-adherent breast milk leukocytes mediated NKC and ADCC. Mononuclear cells from young children demonstrated normal ADCC, when compared to ADCC of adult cells. Neonatal cord blood and a CGD patient's peripheral blood mononuclear and ploymorphonuclear cells demonstrated high ADCC compared to adult cells. Intraepithelial lymphocytes, spleen cells, and peritoneal cells from normal guinea pigs demonstrated NKC and ADCC. Animals which had been starved and opiated were made susceptible to infection by Shigella. The susceptible animals demonstrated deficient NKC and ADCC with all three leukocyte populations. High NKC and ADCC activity of gut-associated leukocytes from human breast milk and guinea pig tissues may correlate with resistance to infection. ^