971 resultados para Peguinterferon 2a.Ribavirina
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Resumo:
Microcystin is a hepatotoxic peptide which inhibits protein phosphatase types 1 and 2A. The objective of the present study was to evaluate the physiopathologic effects of microcystin-LR in isolated perfused rat kidney. Adult Wistar rats (N = 5) of both sexes (240-280 g) were utilized. Microcystin-LR (1 µg/ml) was perfused over a period of 120 min, during which samples of urine and perfusate were collected at 10-min intervals to determine the levels of inulin, sodium, potassium and osmolality. We observed a significant increase in urinary flow with a peak effect at 90 min (control (C) = 0.20 ± 0.01 and treated (T) = 0.32 ± 0.01 ml g-1 min-1, P<0.05). At 90 min there was a significant increase in perfusate pressure (C = 129.7 ± 4.81 and T = 175.0 ± 1.15 mmHg) and glomerular filtration rate (C = 0.66 ± 0.07 and T = 1.10 ± 0.04 ml g-1 min-1) and there was a significant reduction in fractional sodium tubular transport at 120 min (C = 78.6 ± 0.98 and T = 73.9 ± 0.95%). Histopathologic analysis of the perfused kidneys showed protein material in the urinary space, suggestive of renal toxicity. These data demonstrate renal vascular, glomerular and urinary effects of microcystin-LR, indicating that microcystin acts directly on the kidney by probable inhibition of protein phosphatases.
Resumo:
Living organisms manage their resources in well evolutionary-preserved manner to grow and reproduce. Plants are no exceptions, beginning from their seed stage they have to perceive environmental conditions to avoid germination at wrong time or rough soil. Under favourable conditions, plants invest photosynthetic end products in cell and organ growth to provide best possible conditions for generation of offspring. Under natural conditions, however, plants are exposed to a multitude of environmental stress factors, including high light and insufficient light, drought and flooding, various bacteria and viruses, herbivores, and other plants that compete for nutrients and light. To survive under environmental challenges, plants have evolved signaling mechanisms that recognise environmental changes and perform fine-tuned actions that maintain cellular homeostasis. Controlled phosphorylation and dephosphorylation of proteins plays an important role in maintaining balanced flow of information within cells. In this study, I examined the role of protein phosphatase 2A (PP2A) on plant growth and acclimation under optimal and stressful conditions. To this aim, I studied gene expression profiles, proteomes and protein interactions, and their impacts on plant health and survival, taking advantage of the model plant Arabidopsis thaliana and the mutant approach. Special emphasis was made on two highly similar PP2A-B regulatory subunits, B’γ and B’ζ. Promoters of B’γ and B’ζ were found to be similarly active in the developing tissues of the plant. In mature leaves, however, the promoter of B’γ was active in patches in leaf periphery, while the activity of B’ζ promoter was evident in leaf edges. The partially overlapping expression patterns, together with computational models of B’γ and B’ζ within trimeric PP2A holoenzymes suggested that B’γ and B’ζ may competitively bind into similar PP2A trimmers and thus influence each other’s actions. Arabidopsis thaliana pp2a-b’γ and pp2a-b’γζ double mutants showed dwarfish phenotypes, indicating that B’γ and B’ζ are needed for appropriate growth regulation under favorable conditions. However, while pp2a-b’γ displayed constitutive immune responses and appearance of premature yellowings on leaves, the pp2a-b’γζ double mutant supressed these yellowings. More detailed analysis of defense responses revealed that B’γ and B’ζ mediate counteracting effects on salicylic acid dependent defense signalling. Associated with this, B’γ and B’ζ were both found to interact in vivo with CALCIUM DEPENDENT PROTEIN KINASE 1 (CPK1), a crucial element of salicylic acid signalling pathway against pathogens in plants. In addition, B’γ was shown to modulate cellular reactive oxygen species (ROS) metabolism by controlling the abundance of ALTERNATIVE OXIDASE 1A and 1D in mitochondria. PP2A B’γ and B’ζ subunits turned out to play crucial roles in the optimization of plant choices during their development. Taken together, PP2A allows fluent responses to environmental changes, maintenance of plant homeostasis, and grant survivability with minimised cost of redirection of resources from growth to defence.
Resumo:
Cytochrome P450 (CYP) 2A enzymes are involved in the metabolism of numerous drugs and hormones and activate different carcinogens. Human CYP2A6, mouse CYP2A5 and rat CYP2A3 are orthologous enzymes that present high similarity in their amino acid sequence and share substrate specificities. However, different from the human and mouse enzyme, CYP2A3 is not expressed in the rat liver. There are limited data about expression of CYP2A3 in extrahepatic tissues and its regulation by typical CYP inducers. Therefore, the objective of the present study was to analyze CYP2A3 mRNA expression in different rat tissues by RT-PCR, and to study the influence of 3-methylcholanthrene, pyrazole and ß-ionone treatment on its expression. Male Wistar rats were divided into four groups of 5 rats each, and were treated ip for 4 days with 3-methylcholanthrene (25 mg/kg body weight), pyrazole (150 mg/kg body weight), ß-ionone (1 g/kg body weight), or vehicle. Total RNA was extracted from tissues and CYP2A3 mRNA levels were analyzed by semiquantitative RT-PCR. CYP2A3 mRNA was constitutively expressed in the esophagus, lung and nasal epithelium, but not along the intestine, liver, or kidney. CYP2A3 mRNA levels were increased in the esophagus by treatment with 3-methylcholanthrene and pyrazole (17- and 7-fold, respectively), in lung by pyrazole and ß-ionone (3- and 4-fold, respectively, although not statistically significant), in the distal part of the intestine and kidney by 3-methylcholanthrene and pyrazole, and in the proximal part of the intestine by pyrazole. CYP2A3 mRNA was not induced in nasal epithelium, liver or in the middle part of the intestine. These data show that, in the rat, CYP2A3 is constitutively expressed in several extrahepatic tissues and its regulation occurs through a complex mechanism that is essentially tissue specific.
Resumo:
An auditory stimulus speeds up a digital response to a subsequent visual stimulus. This facilitatory effect has been related to the expectancy and the immediate arousal that would be caused by the accessory stimulus. The present study examined the relative contribution of these two influences. In a first and a third experiment a simple reaction time task was used. In a second and fourth experiment a go/no-go reaction time task was used. In each of these experiments, the accessory stimulus preceded the target stimulus by 200 ms for one group of male and female volunteers (G Fix). For another group of similar volunteers (G Var) the accessory stimulus preceded the target stimulus by 200 ms in 25% of the trials, by 1000 ms in 25% of the trials and was not followed by the target stimulus in 50% of the trials (Experiments 1a and 1b) or preceded the target stimulus by 200 ms in 6% of the trials and by 1000 ms in 94% of the trials (Experiments 2a and 2b). There was a facilitatory effect of the accessory stimulus for G Fix in the four experiments. There was also a facilitatory effect of the accessory stimulus at the 200-ms stimulus onset asynchrony for G Var in Experiments 1a and 1b but not in Experiments 2a and 2b. The facilitatory effects observed were larger in the go/no-go task than in the simple task. Taken together, these results suggest that expectancy is much more important than immediate arousal for the improvement of performance caused by an accessory stimulus.
Resumo:
Neuroblastoma, the most common extracranial tumor in childhood, has a wide spectrum of clinical and biological features. The loss of heterozygosity within the 9p21 region has been reported as a prognostic factor. Two tumor suppressor genes located in this region, the CDKN2B/p15 and CDKN2A/p16 (cyclin-dependent kinase inhibitors 2B and 2A, respectively) genes, play a critical role in cell cycle progression and are considered to be targets for tumor inactivation. We analyzed CDKN2B/p15 and CDKN2A/p16 gene alterations in 11 patients, who ranged in age from 4 months to 13 years (male/female ratio was 1.2:1). The most frequent stage of the tumor was stage IV (50%), followed by stages II and III (20%) and stage I (10%). The samples were submitted to the multiplex PCR technique for homozygous deletion analysis and to single-strand conformation polymorphism and nucleotide sequencing for mutation analysis. All exons of both genes were analyzed, but no deletion was detected. One sample exhibited shift mobility specific for exon 2 in the CDKN2B/p15 gene, not confirmed by DNA sequencing. Homozygous deletions and mutations are not involved in the inactivation mechanism of the CDKN2B/p15 and CDKN2A/p16 genes in neuroblastoma; however, these two abnormalities do not exclude other inactivation pathways. Recent evidence has shown that the expression of these genes is altered in this disease. Therefore, other mechanisms of inactivation, such as methylation of promoter region and unproperly function of proteins, may be considered in order to estimate the real contribution of these genes to neuroblastoma genesis or disease progression.
Resumo:
The epidemiology of hepatitis A virus (HAV) infection is shifting from high to intermediate endemicity in Brazil, resulting in increased numbers of susceptible individuals and a greater potential for the emergence of outbreaks. Universal vaccination against HAV has been recommended for children, but updated sero-epidemiological data are necessary to analyze the level of natural immunity and to identify candidates for preventive measures. In addition, more molecular studies are necessary to characterize the genotypes involved in HAV infections and outbreaks. Sera from 299 school children (5-15 years old) and 25 school staff members, collected during an outbreak of HAV at a rural public school in June 2000, were tested for IgM and total anti-HAV antibodies (ELISA). Viral RNA was amplified by RT-PCR from anti-HAV IgM-positive sera and from 19 fecal samples. Direct nucleotide sequencing of the VP1/2A region was carried out on 18 PCR-positive samples. Acute HAV infection was detected by anti-HAV IgM in 93/299 children and in 3/25 adult staff members. The prevalence of total anti-HAV antibodies in IgM-negative children under 5 years of age was only 10.5%. HAV-RNA was detected in 46% IgM-positive serum samples and in 16% stool samples. Sequence analysis showed that half the isolates belonged to subgenotype IA and the other half to IB. On the basis of these data, mass vaccination against HAV is recommended without prevaccination screening, especially for children before they enter school, since nearly 90% of the children under 5 years were susceptible. Molecular characterization indicated the endemic circulation of specific HAV strains belonging to subgenotypes IA and IB.
Resumo:
The Northeast region is the location of most cases of acute hepatitis A virus (HAV) in Brazil. In the present study, the genotypes of HAV strains from Pernambuco State, one of most populous states in the Northeast region, were characterized. Blood samples positive for anti-HAV IgM from 145 individuals (mean age = 29.1 years), collected during 2002 and 2003, were submitted to nested RT-PCR for amplification of the 5'non-translated region (5'NTR) and VP1/2A regions of the HAV genome. The VP1/2A and 5'NTR regions were amplified in 39 and 21% of the samples, respectively. Nucleotide sequencing was carried out in 46% of VP1/2A and in 53% of 5'NTR isolates. The identity in nucleotide sequence of the VP1/2A region ranged from 93.6 to 100.0%. Phylogenetic analysis of the VP1/2A sequences showed that 65% belong to sub-genotype IA and 35% to sub-genotype IB. Co-circulation of both sub-genotypes was observed in the two years studied. Distinct clusters of highly related sequences were observed in both sub-genotypes, suggesting endemic circulation of HAV strains in this area. In the 5'NTR isolates, 92.7-99.2% identity was observed and two isolates presented one deletion at position 413. Phylogenetic analysis showed that genotype IA strains cluster in the tree in the same way as genotype IB strains, but one IIIA isolate from Spain clusters with genotype IB strains. These results do not allow us to state that 5'NTR could be used to genotype HAV sequences. This is the first report of co-circulation of sub-genotypes IA and IB in this region, providing additional information about the molecular epidemiology of HAV strains in Brazil.
Resumo:
Ampelozizyphus amazonicus Ducke is a tree commonly found in the Amazon region and an extract of its stem bark is popularly used as an antimalarial and anti-inflammatory agent and as an antidote to snake venom. Ursolic acid; five lupane type triterpenes: betulin, betulinic acid, lupenone, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid, and three phytosteroids: stigmasterol, sitosterol and campesterol, have been isolated from stem extracts of A. amazonicus Ducke. Their structures were characterized by spectral data including COSY and HMQC. In an in vitro biological screening of the isolated compounds, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid was cytotoxic against the SKBR-3 human adenocarcinoma cell line (1 to 10 mg/mL), while 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid exhibited cytotoxicity against both SKBR-3 human adenocarcinoma and C-8161 human melanoma tumor cell lines (>0.1 mg/mL). In the present study, different extracts and some fractions of this plant were also investigated for trypanocidal activity due to the presence of pentacyclic triterpenes. The triterpene classes are potent against Trypanosoma cruzi. The bioassays were carried out using blood collected from Swiss albino mice by cardiac puncture during the parasitemic peak (7th day) after infection with the Y strain of T. cruzi. The results obtained showed that A. amazonicus is a potential source of bioactive compounds since its extracts and fractions isolated from it exhibited in vitro parasite lysis against trypomastigote forms of T. cruzi at concentrations >100 µg/mL. Fractions containing mainly betulin, lupenone, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid showed more activity than crude extracts.
Resumo:
The present investigation was undertaken to study the effect of β-blockers and exercise training on cardiac structure and function, respectively, as well as overall functional capacity in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CArKO). α2A/α2CArKO and their wild-type controls were studied for 2 months, from 3 to 5 months of age. Mice were randomly assigned to control (N = 45), carvedilol-treated (N = 29) or exercise-trained (N = 33) groups. Eight weeks of carvedilol treatment (38 mg/kg per day by gavage) or exercise training (swimming sessions of 60 min, 5 days/week) were performed. Exercise capacity was estimated using a graded treadmill protocol and HR was measured by tail cuff. Fractional shortening was evaluated by echocardiography. Cardiac structure and gastrocnemius capillary density were evaluated by light microscopy. At 3 months of age, no significant difference in fractional shortening or exercise capacity was observed between wild-type and α2A/α2CArKO mice. At 5 months of age, all α2A/α2CArKO mice displayed exercise intolerance and baseline tachycardia associated with reduced fractional shortening and gastrocnemius capillary rarefaction. In addition, α2A/ α2CArKO mice presented cardiac myocyte hypertrophy and ventricular fibrosis. Exercise training and carvedilol similarly improved fractional shortening in α2A/α2CArKO mice. The effect of exercise training was mainly associated with improved exercise tolerance and increased gastrocnemius capillary density while β-blocker therapy reduced cardiac myocyte dimension and ventricular collagen to wild-type control levels. Taken together, these data provide direct evidence for the respective beneficial effects of exercise training and carvedilol in α2A/α2CArKO mice preventing cardiac dysfunction. The different mechanisms associated with beneficial effects of exercise training and carvedilol suggest future studies associating both therapies.