987 resultados para Pb-isotopes
Resumo:
River floodplain soils are sinks and potential sources for toxic trace metals like Cu and Zn. We hypothesize that stable Cu and Zn isotope ratios reflect both the mobilization and the sources of metals. We determined the soil properties, the concentrations and partitioning of Cu and Zn, and variations in δ65Cu and δ66Zn values in a core obtained from an Aquic Udifluvent developed on a freshwater intertidal mudflat of the River Elbe, Germany. The core was sampled at 2 cm intervals to a depth of 34 cm, which corresponds to approximately 9 yr of sedimentation. Elevated concentrations of Cu (up to 320 μg g−1) and Zn (up to 2080 μg g−1) indicated anthropogenic pollution. At the time of sampling the redox conditions changed from oxic (Eh 200 to 400 mV, above 22 cm deep) to strongly anoxic conditions (-100 to -200 mV, below 22 cm deep). The δ65Cu values varied systematically with depth (from -0.02 to 0.16‰) and were correlated with the Fe, C, and N concentrations. Although pre-depositional variations cannot be ruled out, the systematic variation with depth suggests post-sedimentation fractionation of δ65Cu in response to seasonally variable organic matter deposition and redox conditions. In contrast, the δ66ZnIRMM values were uniform (from -0.07 to 0.01‰) throughout the core, indicating that the Zn isotopes did not significantly fractionate after deposition and that the Zn sources were homogeneous throughout the sedimentation.
Resumo:
Abstract. Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian- Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid’s water level was low (high �18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high �13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower �18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, �13Corg are complacent; in contrast, Lake Prespa shows consistently higher �13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high �18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low �18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest �18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, �18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low �18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.
Resumo:
The short-lived 182Hf–182W isotope system can provide powerful constraints on the timescales of planetary core formation, but its application to iron meteorites is hampered by neutron capture reactions on W isotopes resulting from exposure to galactic cosmic rays. Here we show that Pt isotopes in magmatic iron meteorites are also affected by capture of (epi)thermal neutrons and that the Pt isotope variations are correlated with variations in 182W/184W. This makes Pt isotopes a sensitive neutron dosimeter for correcting cosmic ray-induced W isotope shifts. The pre-exposure 182W/184W derived from the Pt–W isotope correlations of the IID, IVA and IVB iron meteorites are higher than most previous estimates and are more radiogenic than the initial 182W/184W of Ca–Al-rich inclusions (CAI). The Hf–W model ages for core formation range from +1.6±1.0 million years (Ma; for the IVA irons) to +2.7±1.3 Ma after CAI formation (for the IID irons), indicating that there was a time gap of at least ∼1 Ma between CAI formation and metal segregation in the parent bodies of some iron meteorites. From the Hf–W ages a time limit of <1.5–2 Ma after CAI formation can be inferred for the accretion of the IID, IVA and IVB iron meteorite parent bodies, consistent with earlier conclusions that the accretion of differentiated planetesimals predated that of most chondrite parent bodies.
Resumo:
A recent study relying purely on statistical analysis of relatively short time series suggested substantial re-thinking of the traditional view about causality explaining the detected rising trend of atmospheric CO2 (atmCO2) concentrations. If these results are well-justified then they should surely compel a fundamental scientific shift in paradigms regarding both atmospheric greenhouse warming mechanism and global carbon cycle. However, the presented work suffers from serious logical deficiencies such as, 1) what could be the sink for fossil fuel CO2 emissions, if neither the atmosphere nor the ocean – as suggested by the authors – plays a role? 2) What is the alternative explanation for ocean acidification if the ocean is a net source of CO2 to the atmosphere? Probably the most provocative point of the commented study is that anthropogenic emissions have little influence on atmCO2 concentrations. The authors have obviously ignored the reconstructed and directly measured carbon isotopic trends of atmCO2 (both δ13C, and radiocarbon dilution) and the declining O2/N2 ratio, although these parameters provide solid evidence that fossil fuel combustion is the major source of atmCO2 increase throughout the Industrial Era.
Resumo:
Hyalotekite, a framework silicate of composition (Ba,Pb,K)(4)(Ca,Y)(2)Si-8(B,Be)(2) (Si,B)(2)O28F, is found in relatively high-temperature(greater than or equal to 500 degrees C) Mn skarns at Langban, Sweden, and peralkaline pegmatites at Dara-i-Pioz, Tajikistan. A new paragenesis at Dara-i-Pioz is pegmatite consisting of the Ba borosilicates leucosphenite and tienshanite, as well as caesium kupletskite, aegirine, pyrochlore, microcline and quartz. Hyalotekite has been partially replaced by barylite and danburite. This hyalotekite contains 1.29-1.78 wt.% Y2O3, equivalent to 0.172-0.238 Y pfu or 8-11% Y on the Ca site; its Pb/(Pb+Ba) ratio ranges 0.36-0.44. Electron microprobe F contents of Langban and Dara-i-Pioz hyalotekite range 1.04-1.45 wt.%, consistent with full occupancy of the F site. A new refinement of the structure factor data used in the original structural determination of a Langban hyalotekite resulted in a structural formula, (Pb1.96Ba1.86K0.18)Ca-2(B1.76Be0.24)(Si1.56B0.44)Si8O28F, consistent with chemical data and all cations with positive-definite thermal parameters, although with a slight excess of positive charge (+57.14 as opposed to the ideal +57.00). An unusual feature of the hyalotekite framework is that 4 of 28 oxygens are non-bridging; by merging these 4 oxygens into two, the framework topology of scapolite is obtained. The triclinic symmetry of hyalotekite observed at room temperature is obtained from a hypothetical tetragonal parent structure via a sequence of displacive phase transitions. Some of these transitions are associated with cation ordering, either Pb-Ba ordering in the large cation sites, or B-Be and Si-B ordering on tetrahedral sites. Others are largely displacive but affect the coordination of the large cations (Pb, Ba, K, Ca). High-resolution electron microscopy suggests that the undulatory extinction characteristic of hyalotekite is due to a fine mosaic microstructure. This suggests that at least one of these transitions occurs in nature during cooling, and that it is first order with a large volume change. A diffuse superstructure observed by electron diffraction implies the existence of a further stage of short-range cation ordering which probably involves both (Pb,K)-Ba and (BeSi,BB)-BSi.
Resumo:
The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.
Resumo:
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Delta phi, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Delta phi dependence of jet yields in 0.14 nb(-1) of root s(NN) = 2.76 TeV Pb + Pb collisions at the LHC for jet transverse momenta p(T) > 45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Delta phi was characterized by the parameter, nu(jet)(2), and the ratio of out-of-plane (Delta phi similar to pi/2) to in-plane (Delta phi similar to 0) yields. Nonzero nu(jet)(2) values were measured in all centrality bins for p(T) < 160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
Resumo:
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1
Resumo:
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 nb(-1) of integrated luminosity obtained in the 2011 LHC Pb + Pb run at root s(NN) = 2.76 TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
Resumo:
In 2005, two ice cores with lengths of 58.7 and 57.6 m respectively to bedrock were recovered from the Miaoergou flat-topped glacier (43 degrees 03 ' 19 '' N, 94 degrees 19 ' 21 '' E; 4512 m a.s.l.), eastern Tien Shan. Pb-210 dating of one of the ice cores (57.6 m) was performed, and an age of AD 1851 +/- 6 at a depth of 35.2 m w.e. was determined. For the period AD 1851-2005, a mean annual net accumulation of 229 +/- 7 mm w.e. a(-1) was calculated. At the nearby oasis city of Hami (similar to 80 km from the Miaoergou flat-topped glacier) the annual precipitation rate is 38 mm w.e. a(-1), hence glacial meltwater is a major water supply for local residents. The surface activity concentration of Pb-210(ex) was found to be similar to 400 mBq kg(-1), which is higher than observed at other continental sites such as Belukha, Russia, and Tsambagarav, Mongolia, which have surface activity concentrations of 280 mBq kg(-1). The Pb-210 dating agrees well with the chronological sequence deduced from the annual-layer counting resulting from the seasonalities of delta O-18 and trace metals for the period AD 1953-2005, and beta-activity horizons resulting from atmospheric nuclear testing during the period AD 1962-63. We conclude that Pb-210 analysis is a suitable method for obtaining a continuous dating of the Miaoergou ice core for similar to 160 years, which can also be applied to other ice cores recovered from the mountains of western China.