870 resultados para Path-dependence
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We use a series expansion method introduced recently by Rickman and Phillpot (Phys. Rev. Lett. 1991, 66, 349) to study the temperature dependent conformational properties of short ionized polyelectrolyte chains in ionic solutions by conducting simulations at a single temperature. The charged beads located at the sites of a cubic lattice interact through screened Coulombic interactions. It is shown that this method provides results that correlate with other Monte Carlo simulations, performed over a range of temperatures, where conformational transitions induced by thermal and screening effects occur. It is also shown that the method can be used successfully when the potential is weakly dependent on temperature. © 1994 American Chemical Society.
Resumo:
Currently, it is easy to find health professionals who not only attach importance to qualitative methods, but also recognize their help to better understand their patients' lives. However, its use in dentistry is still incipient, either due to ignorance or because of technical / operational difficulties in identifying possibilities for their use in research. Thus, the purpose of this study was to review the literature on the characteristics and peculiarities of the qualitative methodology, demonstrating their techniques of collecting, recording and analyzing data. For this, we performed a descriptive literature, from a survey in the "LILACS", "BBO" and "PUBMED" databases, by keywords related to the theme, selecting only the papers that mentioned the "importance" of qualitative research, the "characteristics and fundamentals," and the "techniques of collecting, recording and data analysis" involving this methodology. It was found that all studies have highlighted the importance of qualitative research to the construction of new knowledge that cannot be achieved by quantitative data. We found many different techniques to gather, record and analyze qualitative data applied to the dentistry field. It was concluded that qualitative research represents a new path to be followed by dentistry, so that we are able to plan actions in ethical and humane public health dentistry, bringing better results to the population, because of the depth of knowledge that your date can.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.
Resumo:
This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
This paper considers the problem of dedicated path-protection in wavelength-division multiplexed (WDM) mesh networks with waveband switching functionality under shared risk link group (SRLG) constraints. Two dedicated path protection schemes are proposed, namely the PBABL scheme and the MPABWL scheme. The PBABL scheme protects each working waveband-path through a backup waveband-path. The MPABWL scheme protects each working waveband-path by either a backup waveband-path or multiple backup lightpaths. Heuristic algorithms adopting random optimization technique are proposed for both the schemes. The performance of the two protection schemes is studied and compared. Simulation results show that both the heuristics can obtain optimum solutions and the MPABWL scheme leads to less switching and transmission costs than the PBABL scheme.
Resumo:
Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength division multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated protection and shared protection schemes are considered. Given the network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures such as fiber cut and duct cut, we consider the general shared risk link group (SRLG) diverse routing constraints. We first resort to the integer linear programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA) and tabu search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu search method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
We propose a resource-sharing scheme that supports three kinds of sharing scenarios in a WDM mesh network with path-based protection and sparse OEO regeneration. Several approaches are used to maximize the sharing of wavelength-links and OEO regenerators.
Resumo:
In this work, we investigated the properties of a fusogenic cationic lipid, diC14-amidine, and show that this lipid possesses per se the capacity to adopt either an interdigitated structure (below and around its transition temperature) or a lamellar structure (above the transition temperature). To provide experimental evidence of this lipid bilayer organization, phospholipids spin-labeled at different positions of the hydrocarbon chain were incorporated into the membrane and their electron spin resonance (ESR) spectra were recorded at different temperatures. For comparison, similar experiments were performed with dimyristoyl phosphatidylcholine, a zwitterionic lipid (DMPC) which adopts a bilayer organization over a broad temperature range. Lipid mixing between diC14-amidine and asolectin liposomes was more efficient below (10-15 degrees C) than above the transition temperature (above 25 degrees C). This temperature-dependent "fusogenic" activity of diC14-amidine liposomes is opposite to what has been observed so far for peptides or virus-induced fusion. Altogether, our data suggest that interdigitatiori is a highly fusogenic state and that interdigitation-mediated fusion occurs via an unusual temperature-dependent mechanism that remains to be deciphered.
Resumo:
High pressure NMR spectroscopy has developed into an important tool for studying conformational equilibria of proteins in solution. We have studied the amide proton and nitrogen chemical shifts of the 20 canonical amino acids X in the random-coil model peptide Ac-Gly-Gly-X-Ala-NH2, in a pressure range from 0.1 to 200 MPa, at a proton resonance frequency of 800 MHz. The obtained data allowed the determination of first and second order pressure coefficients with high accuracy at 283 K and pH 6.7. The mean first and second order pressure coefficients <B-1(15N)> and <B-2(15N)> for nitrogen are 2.91 ppm/GPa and -2.32 ppm/GPa(2), respectively. The corresponding values <B-1(1H)> and <B-2(1H)> for the amide protons are 0.52 ppm/GPa and -0.41 ppm/GPa(2). Residual dependent (1)J(1H15N)-coupling constants are shown.
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
Two-particle azimuthal (Delta phi) and pseudorapidity (Delta eta) correlations using a trigger particle with large transverse momentum (p(T)) in d+Au, Cu+Cu, and Au+Au collisions at root s(NN) = 62.4 GeV and 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider are presented. The near-side correlation is separated into a jet-like component, narrow in both Delta phi and Delta eta, and the ridge, narrow in Delta phi but broad in Delta eta. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated p(T). The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at root s(NN) = 200 GeV, is also found in Cu+Cu collisions and in collisions at root s(NN) = 62.4 GeV, but is found to be substantially smaller at root s(NN) = 62.4 GeV than at root s(NN) = 200 GeV for the same average number of participants (< N-part >). Measurements of the ridge are compared to models.