982 resultados para Parotid gland.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper transport and accumulation were studied in virgin and lactating C57BL/6 mice, with and without expression of ceruloplasmin (Cp), to assess the importance of Cp to these processes. One hour after i.p. injection of tracer 64Cu, liver and kidney accounted for 80% of the radioactivity, and mammary gland 1%, while in lactating Cp+/+ mice 2–4 days post partum, uptake by mammary gland was 9-fold higher and that of liver and other organs was decreased, with 64Cu rapidly appearing in milk. Parallel studies in Cp−/− mice (siblings from same colony) gave virtually identical results. However, their milk contained less 64Cu, and actual copper contents determined by furnace atomic absorption were less than half those for milk from normal dams. Liver copper concentrations of pups born to Cp−/− dams also were half those of pups from wild type dams. Copper in pup brains was unaffected; but iron concentrations were reduced. We conclude that absence of Cp, while not affecting entry of exchangeable copper from the blood into the mammary gland, does have a significant effect on the availability of this metal to the newborn through the milk and in the form of stores accumulating in gestation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Her2 (erbB2) receptor is overexpressed in around twenty percent of early breast cancer and historically conferred a poorer prognosis (1). Targeted anti-Her2 therapy has significantly improved outcomes for these women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monotremes are the only oviparous mammals and exhibit a fascinating combination of reptilian and mammalian characters. They represent a component of synapsidal reproduction by laying shelled eggs which are incubated outside the mother’s body. This is accompanied by a prototherian lactation process, marking them as representatives of early mammals. The only extant monotremes are the platypus, and the short- and long- beaked echidnas, and their distributions are limited to Australia and New Guinea. Apart for a short weaning period, milk is the sole source of nutrition and protection for the hatchlings which are altricial and immunologically naive. The duration of lactation in these mammals is prolonged relative to the gestational length and period of incubation of eggs. Much of the development of monotreme young occurs in the non-sterile ex-utero environment. Therefore the role of milk in the growth, development and disease protection of the young is of significant interest. By sequencing the cDNA of cells harvested from monotreme milk, we have identified a novel monotreme- specific transcript, and the corresponding gene was designated as the EchAMP. The expression profile of this gene in various tissues revealed that it is highly expressed in milk cells. The peptides corresponding to the EchAMP protein have been identified in a sample of echidna milk In silico analysis indicated putative antimicrobial potential for the cognate protein of EchAMP. This was further confirmed by in vitro assays using a host of bacteria. Interestingly, EchAMP did not display any activity against a commensal gut floral species. These results support the hypothesis of enhancement of survival of the young by antimicrobial bioactives of mammary gland origin and thus emphasize the protective, non- nutritional role of milk in mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stephen utilised the unique lactation strategy of the tammar wallaby to identify factors within the mammary gland that determine the composition of milk and how the milk composition changes throughout lactation in order to provide immunity both to the nursing mammary gland and the suckling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 This project focused on the novel S100A19 protein, expressed exclusively in marsupials and monotremes, identifying it as an important component of the innate immune system. Data showed that S100A19 is differentially regulated in the pouch and mammary gland of the wallaby to protect the infant when most susceptible to infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactation is a key aspect of mammalian evolution for adaptation of various reproductive strategies along different mammalian lineages. Marsupials, such as tammar wallaby, adopted a short gestation and a relatively long lactation cycle, the newborn is immature at birth and significant development occurs postnatally during lactation. Continuous changes of tammar milk composition may contribute to development and immune protection of pouch young. Here, in order to address the putative contribution of newly identified secretory milk miRNA in these processes, high throughput sequencing of miRNAs collected from tammar milk at different time points of lactation was conducted. A comparative analysis was performed to find distribution of miRNA in milk and blood serum of lactating wallaby.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adequate amounts of copper in milk are critical for normal neonatal development, however the mechanisms regulating copper supply to milk have not been clearly defined. PMC42-LA cell cultures representative of resting, lactating and suckled mammary epithelia were used to investigate the regulation of the copper uptake protein, CTR1. Both the degree of mammary epithelial differentiation (functionality) and extracellular copper concentration greatly impacted upon CTR1 expression and its plasma membrane association. In all three models (resting, lactating and suckling) there was an inverse correlation between extracellular copper concentration and the level of CTR1. Cell surface biotinylation studies demonstrated that as extracellular copper concentration increased membrane associated CTR1 was reduced. There was a significant increase in CTR1 expression (total and membrane associated) in the suckled gland model in comparison to the resting gland model, across all copper concentrations investigated (0-50 μM). Regulation of CTR1 expression was entirely post-translational, as quantitative real-time PCR analyses showed no change to CTR1 mRNA between all models and culture conditions. X-ray fluorescence microscopy on the differentiated PMC42-LA models revealed that organoid structures distinctively accumulated copper. Furthermore, as PMC42-LA cell cultures became progressively more specialised, successively more copper accumulated in organoids (resting

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Placentae and mammary epithelial cells are unusual in robustly expressing two copper "pumps", ATP7A and B, raising the question of their individual roles in these tissues in pregnancy and lactation. Confocal microscopic evidence locates ATP7A to the fetal side of syncytiotrophoblasts, suggesting a role in pumping Cu towards the fetus; and to the basolateral (blood) side of lactating mammary epithelial cells, suggesting a role in recycling Cu to the blood. We tested these concepts in wild-type C57BL6 mice and their transgenic counterparts that expressed hATP7A at levels 10-20× those of endogenous mAtp7a. In lactation, overexpression of ATP7A reduced the Cu concentrations of the mammary gland and milk ~50%. Rates of transfer of tracer (64)Cu to the suckling pups were similarly reduced over 30-48 h, as was the total Cu in 10-day -old pups. During the early and middle periods of gestation, the transgenic litters had higher Cu concentrations than the wild-type, placental Cu showing the reverse trend; but this difference was lost by the first postnatal day. The transgenic mice expressed ATP7A in some hepatocytes, so we investigated the possibility that metalation of ceruloplasmin (Cp) might be enhanced. Rates of (64)Cu incorporation into Cp, oxidase activity, and ratios of holo to apoceruloplasmin were unchanged. We conclude that in the lactating mammary gland, the role of ATP7A is to return Cu to the blood, while in the placenta it mediates Cu delivery to the fetus and is the rate-limiting step for fetal Cu nutrition during most of gestation in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many preclinical studies have implicated β3 integrin receptors (αvβ3 and αIIbβ3) in cancer progression, β3 inhibitors have shown only modest efficacy in patients with advanced solid tumours. The limited efficacy of β3 inhibitors in patients could arise from our incomplete understanding of the precise function of β3 integrin and, consequently, inappropriate clinical application. Data from animal studies are conflicting and indicate heterogeneity with respect to the relative contributions of β3-expressing tumour and stromal cell populations in different cancers. Here we aimed to clarify the function and relative contributions to metastasis of tumour versus stromal β3 integrin in clinically relevant models of spontaneous breast cancer metastasis, with particular emphasis on bone metastasis. We show that stable down-regulation of tumour β3 integrin dramatically impairs spontaneous (but not experimental) metastasis to bone and lung without affecting primary tumour growth in the mammary gland. Unexpectedly, and in contrast to subcutaneous tumours, orthotopic tumour vascularity, growth and spontaneous metastasis were not altered in mice null for β3 integrin. Tumour β3 integrin promoted migration, protease expression and trans-endothelial migration in vitro and increased vascular dissemination in vivo, but was not necessary for bone colonization in experimental metastasis assays. We conclude that tumour, rather than stromal, β3 expression is essential and is required early for efficient spontaneous breast cancer metastasis to bone and soft tissues. Accordingly, differential gene expression analysis in cohorts of breast cancer patients showed a strong association between high β3 expression, early metastasis and shorter disease-free survival in patients with oestrogen receptor-negative tumours. We propose that β3 inhibitors may be more efficacious if used in a neoadjuvant setting, rather than after metastases are established. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is currently no cure for metastatic castration-resistant prostate cancer (CRPC). Chemoresistance and metastatic disease remain the main causes of treatment failure and mortality in CaP patients. Although several advances have been made in the control of CRPC with some newly developed drugs, there is still an urgent need to investigate the mechanisms and pathways of prostate cancer (CaP) metastasis and chemoresistance, identify useful therapeutic targets, develop novel treatment approaches, improve current therapeutic modalities and increase patients' survival. Cancer stem cells (CSCs), a minority population of cancer cells characterised by self-renewal and tumor initiation, have gained intense attention as they not only play a crucial role in cancer recurrence but also contribute substantially to chemoresistance. As such, a number of mechanisms in chemoresistance have been identified to be associated with CSCs. Therefore, a thorough and integral understanding of these mechanisms can identify novel biomarkers and develop innovative therapeutic strategies for CaP treatment. Our recent data have demonstrated CSCs are associated with CaP chemosensitivity. In this review, we discuss the roles of putative CSC markers in CaP chemoresistance and elucidate several CSC-associated signaling pathways such as PI3K/Akt/mTOR, Wnt/β-catenin and Notch pathways in the regulation of CaP chemoresistance. Moreover, we will summarize emerging and innovative approaches for the treatment of CRPC and address the challenging CRPC that is driven by CSCs. Understanding the link between CSCs and metastatic CRPC will facilitate the development of novel therapeutic approaches to overcome chemoresistance and improve the clinical outcomes of CaP patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease. New animal models with unique reproductive strategies are now becoming increasingly relevant to search for these factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoblastoma (RB), a malignant tumour of the eye arising from developing retina, is the most frequent primary intraocular malignancy of childhood. Its primary management with chemotherapy involves combination regimen of etoposide, vincristine and carboplatin and intra vitreal chemotherapy using melphalan when vitreous seeds develop. Radiotherapy is another effective mode in treating RB. We recently explored the notion if radiotherapy in RB can be mediated via Sodium Iodide Symporter (NIS), an intrinsic membrane glycoprotein which is a key regulator of iodide access to thyroid gland. Its expression has been exploited successfully for diagnostic imaging and molecular radionuclide-based therapy of thyroid cancer. We determined that NIS is expressed endogenously in RB tumour tissues, and in retinoblastoma cell lines Y79 and Weri-Rb-1, and therefore made an attempt to enhance the endogenously low expression of NIS protein in both Y79 and Weri-Rb-1 cells. Here we report about the potential of bovine lactoferrin (bLf) which is a known chemo preventive and emerging safe anti-cancer bio drug, as well as a natural transcriptional activator of genes, to enhance the endogenous expression of NIS in Y79 and Weri-Rb-1 cells. Real time PCR revealed that both cell lines express mRNA of lactoferrin receptors while flow cytometry and confocal microscopy showed the cells efficiently internalize bLf which upregulates NIS expression. These findings highlight an important step that could be taken towards the development of less harmful approaches for the treatment of RB by employing natural supplement bLf (with its clinically proven safe profile), and warrants further studies in future, focussing on enhancing NIS expression in RB cells and NIS functional assays in these cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 This research investigated the anti-cancer effects of milk protein, lactoferrin. It was found that lactoferrin specifically induced cell death in breast cancer cells and was non-toxic to normal mammary gland cells. Key molecular mechanisms targeted by lactoferrin were elucidated in this study which provides important insight into the activity of this protein as an anti-cancer agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Early timing of adrenarche, associated with relatively high levels of dehydroepiandrosterone (DHEA) and its sulphate (DHEA-S) in children, has been linked with mental health problems, particularly anxiety. However, little is known about possible neurobiological mechanisms underlying this association. The pituitary gland is a key component of the hypothalamic–pituitary–adrenal (HPA) axis, the activation of which triggers the onset of adrenarche. The purpose of this study was to examine the extent to which pituitary gland volume mediated the relationship between levels of DHEA/DHEA-S relative to age (i.e., adrenarcheal timing) and symptoms of anxiety in 95 children (50 female, M age 9.50 years, SD 0.34 years). Relatively high DHEA and DHEA-S (DHEA/S) levels were found to be associated with larger pituitary gland volumes. There was no significant direct effect of relative DHEA/S levels on overall symptoms of anxiety. However, results supported an indirect link between relatively high DHEA/S levels and symptoms of social anxiety, mediated by pituitary gland volume. No sex differences were observed for any relationship. Our findings suggest that neurobiological mechanisms may be partly responsible for the link between relatively early adrenarche and anxiety symptoms in children. One possible mechanism for this finding is that an enlarged pituitary gland in children experiencing relatively advanced adrenarche might be associated with hyper-activity/reactivity of the HPA axis. Further research is needed to understand the role of stress in the link between adrenarcheal timing and HPA-axis function, especially in relation to the development of anxiety symptoms in children and adolescents.