893 resultados para Paraopeba - MG
Resumo:
High resolution planktonic foraminifera Mg/Ca paleotemperatures and oxygen isotopes of seawater of Ocean Drilling Program (ODP) Site 1078 (off Angola) have been reconstructed and reveal insights into the seasonal thermal evolution of the Angola Current (AC), the Angola-Benguela Front (ABF), and the Benguela Current (BC) during the last glacial (50-23.5 ka BP). Special emphasis is put on time intervals possibly associated with the North Atlantic Heinrich Stadials (HS), which are thought to lead to an accumulation of heat in the South Atlantic due to a reduction of the Atlantic Meridional Overturning Circulation (AMOC). Within dating uncertainties, Globigerinoides ruber (pink) Mg/Ca-based sea surface temperature (SST) estimates that represent southern hemisphere summer surface conditions show several warming episodes that coincide with North Atlantic HS, thus supporting the concept of the bipolar thermal seesaw. In contrast, the Mg/Ca-based temperatures of Globigerina bulloides, representing the SST of the ABF/BC system during southern hemisphere winter, show no obvious response to the North Atlantic HS in the study area. We suggest that surface water cooling during the winter season is due to enhanced upwelling or upwelling of colder water masses which has most likely mitigated a warming of the ABF/BC system during HS. We further speculate that the seasonal asymmetry in our SST record results from seasonal differences in the dominance of atmospheric and oceanic teleconnections during periods of northern high latitude cooling.
Resumo:
Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.
Resumo:
Knowledge of past atmospheric pCO2 is important for evaluating the role of greenhouse gases in climate forcing. Ice core records show the tight correlation between climate change and pCO2, but records are limited to the past ~900 kyr. We present surface ocean pH and pCO2 data, reconstructed from boron isotopes in planktonic foraminifera over two full glacial cycles (0-140 and 300-420 kyr). The data co-vary strongly with the Vostok pCO2-record and demonstrate that the coupling between surface ocean chemistry and the atmosphere is recorded in marine archives, allowing for quantitative estimation of atmospheric pCO2 beyond the reach of ice cores.
Resumo:
The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.
Resumo:
iven the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10?°C) by comparing for the first time the seasonal Mg/Ca and d18O cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal d18O patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The d18O patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes.
Resumo:
Two SST records based on Mg/Ca of G. ruber (pink) from the continental slope off West Africa at 15°N and 12°N shed new light on the thermal bipolar seesaw pattern in the northeastern tropical Atlantic during periods of reduced Atlantic Meridional Overturning Circulation (AMOC) associated with Heinrich stadials H1 to H6. The two records indicate that the latitudinal position of the bipolar seesaw's zero-anomaly line, between cooling in the North and warming in the South, gradually shifted southward from H6 to H1. A conceptual model is presented that aims to provide a physically consistent mechanism for the southward migration of the seesaw's fulcrum. The conceptual model suggests latitudinal movements of the Intertropical Convergence Zone, driven by a combination of orbital-forced changes in the meridional temperature gradient within the realm of the Hadley cell and the expansion of the Northern Hemisphere cryosphere, as a major factor.
Resumo:
Multidecadal variations in Atlantic sea surface temperatures (SST) influence the climate of the Northern Hemisphere. However, prior to the instrumental time period, information on multidecadal climate variability becomes limited, and there is a particular scarcity of sufficiently resolved SST reconstructions. Here, we present an eastern tropical North Atlantic reconstruction of SSTs based on foraminiferal (Globigerinoides ruber pink) Mg/Ca ratios that resolves multidecadal variability over the past 1700 years. Spectral power in the multidecadal band (50 to 70 years period) is significant over several time intervals suggesting that the Atlantic Multidecadal Oscillation (AMO) has been influencing local SST. Since our data exhibit high scatter the absence of multidecadal variability in the remaining record does not exclude the possibility that SST variations on this time scale might have been present without being detected in our data. Cooling by ~0.5 °C takes place between about AD 1250 and AD 1500; while this corresponds to the inception of the Little Ice Age (LIA), the end of the LIA is not reflected in our record and SST remains relatively low. This transition to cooler SSTs parallels the previously reconstructed shift in the North Atlantic Oscillation towards a low pre-20th century mean state and possibly reflects common solar forcing.
Resumo:
Modern variability in upwelling off southern Indonesia is strongly controlled by the Australian-Indonesian monsoon and the El Niño-Southern Oscillation, but multi-decadal to centennial-scale variations are less clear. We present high-resolution records of upper water column temperature, thermal gradient and relative abundances of mixed layer- and thermocline-dwelling planktonic foraminiferal species off southern Indonesia for the past two millennia that we use as proxies for upwelling variability. We find that upwelling was generally strong during the Little Ice Age (LIA) and weak during the Medieval Warm Period (MWP) and the Roman Warm Period (RWP). Upwelling is significantly anti-correlated to East Asian summer monsoonal rainfall and the zonal equatorial Pacific temperature gradient. We suggest that changes in the background state of the tropical Pacific may have substantially contributed to the centennial-scale upwelling trends observed in our records. Our results implicate the prevalence of an El Niño-like mean state during the LIA and a La Niña-like mean state during the MWP and the RWP.
Resumo:
We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.
Resumo:
Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and >30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp**0.076SST°C, r**2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites.