971 resultados para Parallel design multicenter
Resumo:
Este documento descreve um modelo de tolerância a falhas para sistemas de tempo-real distribuídos. A sugestão deste modelo tem como propósito a apresentação de uma solu-ção fiável, flexível e adaptável às necessidades dos sistemas de tempo-real distribuídos. A tolerância a falhas é um aspeto extremamente importante na construção de sistemas de tempo-real e a sua aplicação traz inúmeros benefícios. Um design orientado para a to-lerância a falhas contribui para um melhor desempenho do sistema através do melhora-mento de aspetos chave como a segurança, a confiabilidade e a disponibilidade dos sis-temas. O trabalho desenvolvido centra-se na prevenção, deteção e tolerância a falhas de tipo ló-gicas (software) e físicas (hardware) e assenta numa arquitetura maioritariamente basea-da no tempo, conjugada com técnicas de redundância. O modelo preocupa-se com a efi-ciência e os custos de execução. Para isso utilizam-se também técnicas tradicionais de to-lerância a falhas, como a redundância e a migração, no sentido de não prejudicar o tempo de execução do serviço, ou seja, diminuindo o tempo de recuperação das réplicas, em ca-so de ocorrência de falhas. Neste trabalho são propostas heurísticas de baixa complexida-de para tempo-de-execução, a fim de se determinar para onde replicar os componentes que constituem o software de tempo-real e de negociá-los num mecanismo de coordena-ção por licitações. Este trabalho adapta e estende alguns algoritmos que fornecem solu-ções ainda que interrompidos. Estes algoritmos são referidos em trabalhos de investiga-ção relacionados, e são utilizados para formação de coligações entre nós coadjuvantes. O modelo proposto colmata as falhas através de técnicas de replicação ativa, tanto virtual como física, com blocos de execução concorrentes. Tenta-se melhorar ou manter a sua qualidade produzida, praticamente sem introduzir overhead de informação significativo no sistema. O modelo certifica-se que as máquinas escolhidas, para as quais os agentes migrarão, melhoram iterativamente os níveis de qualidade de serviço fornecida aos com-ponentes, em função das disponibilidades das respetivas máquinas. Caso a nova configu-ração de qualidade seja rentável para a qualidade geral do serviço, é feito um esforço no sentido de receber novos componentes em detrimento da qualidade dos já hospedados localmente. Os nós que cooperam na coligação maximizam o número de execuções para-lelas entre componentes paralelos que compõem o serviço, com o intuito de reduzir atra-sos de execução. O desenvolvimento desta tese conduziu ao modelo proposto e aos resultados apresenta-dos e foi genuinamente suportado por levantamentos bibliográficos de trabalhos de in-vestigação e desenvolvimento, literaturas e preliminares matemáticos. O trabalho tem também como base uma lista de referências bibliográficas.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Hoje em dia, com os avanços constantes na indústria, novas áreas começam cada vez mais a ser foco de atenção por parte das organizações. Motivados pela procura de melhores condições para os seus colaboradores e por todos os benefícios que este tipo de intervenção oferece, tanto a curto, como principalmente a médio e longo prazo, a Grohe Portugal, mais especificamente o seu departamento de montagem, achou relevante potenciar a aplicação da Ergonomia nos seus postos de trabalho. Posto isto, esta dissertação pretende apresentar o trabalho desenvolvido junto da organização que teve como objetivo projetar e executar uma linha de montagem que tivesse em consideração os seguintes aspetos: • Ergonomia; • Automatização ou semi-automatização de operações; • Simplificação de aspetos operacionais; • Sistemas de abastecimento mais robustos e de fácil uso; • Simplificação de setups; • Definição de dimensões normalizadas para futuros projetos. As soluções encontradas tiveram como objetivo primordial satisfazer o maior número possível de colaboradores, sendo que para tal foram utilizados dados referentes a antropometria da população Portuguesa. Para a realização e conclusão deste projeto, o trabalho foi decomposto em varias etapas, de entre as quais se destacam: • Analise e estudo dos métodos de montagem; • Levantamento de todos os componentes e operações que constituem o processo de fabrico das diversas famílias onde foram implementados novos projetos; • Definição e uniformização da estrutura das novas linhas de montagem; • Estudo e definição da disposição dos componentes na nova linha, bem como da sua forma de abastecimento; • Projeto da linha de montagem em 3D com recurso ao software SolidWorks (DassaultSystemes, 2014); • Montagem final da linha, bem como o acompanhamento da sua fase de arranque. Durante o estagio foi ainda pensado e implementado um projeto paralelo com vista a constante manutenção e melhoria do departamento de montagem cujo objetivo, através de “plant walks”, e detetar de entre outras, situações de falta de identificação de componentes ou equipamentos, degradação de ferramentas, fugas ou derrames nas linhas, etc. O balanco final do trabalho foi bastante positivo, tendo-se alcançado melhorias em alguns índices de qualidade, tempos de abastecimento e condições ergonómicas dos postos de trabalho que sofreram intervenção, tendo essas melhorias resultado numa avaliação positiva por parte dos colaboradores que integram essas mesmas linhas.
Resumo:
FCT/UNL; UNIDEMI, Caixa Geral de Depósitos, CEST, MANO, Visteon, Axiomatic Design, Pionee
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
Ergonomic interventions such as increased scheduled breaks or job rotation have been proposed to reduce upper limb muscle fatigue in repetitive low-load work. This review was performed to summarize and analyze the studies investigating the effect of job rotation and work-rest schemes, as well as, work pace, cycle time and duty cycle, on upper limb muscle fatigue. The effects of these work organization factors on subjective fatigue or discomfort were also analyzed. This review was based on relevant articles published in PubMed, Scopus and Web of Science. The studies included in this review were performed in humans and assessed muscle fatigue in upper limbs. 14 articles were included in the systematic review. Few studies were performed in a real work environment and the most common methods used to assess muscle fatigue were surface electromyography (EMG). No consistent results were found related to the effects of job rotation on muscle activity and subjective measurements of fatigue. Rest breaks had some positive effects, particularly in perceived discomfort. The increase in work pace reveals a higher muscular load in specific muscles. The duration of experiments and characteristics of participants appear to be the factors that most have influenced the results. Future research should be focused on the improvement of the experimental protocols and instrumentation, in order to the outcomes represent adequately the actual working conditions. Relevance to industry: Introducing more physical workload variation in low-load repetitive work is considered an effective ergonomic intervention against muscle fatigue and musculoskeletal disorders in industry. Results will be useful to identify the need of future research, which will eventually lead to the adoption of best industrial work practices according to the workers capabilities.
Resumo:
Currently excessive fossil fuel consumption has become a serious problem. People are searching for new solutions of energy production and there are several options to obtain alternative sources of energy without further devastating the already destroyed environment. One of these solutions is growing microalgae, from which biodiesel can be obtained. The microalgae production is a growing business because of its many useful compounds. In order to collect these compounds microalgae must first be harvested and then dried. Nowadays the solutions used for drying use too much energy and therefore are too expensive and not sustainable. The goal of this project, one of the possible choices during the EPS@ISEP 2013 Spring, was to develop a solar microalgae dryer. The multinational team involved in its development was composed of five students, from distinct countries and fields of study, and was the responsible for designing a solar microalgae dryer prototype for the microalgae laboratory of the chemical engineering department at ISEP, suitable for future tests and incorporating control process (in order not to destroy the microalgae during the drying process). The solar microalgae dryer was built to work as a distiller that gets rid of the excess water from the microalgae suspension. This paper presents a possible solution for this problem, the steps to create the device to harvest the microalgae by drying them with the use of solar energy (also used as an energy source for the solar dryer control system), the technologies used to build the solar microalgae dryer, and the benefits it presents compared to current solutions. It also presents the device from the ethical and sustainable viewpoint. Such alternative to already existing methods is competitive as far as energy usage is concerned.
Resumo:
The goal of this EPS@ISEP project proposed in the Spring of 2014 was to develop a flapping wing flying robot. The project was embraced by a multinational team composed of four students from different countries and fields of study. The team designed and implemented a robot inspired by a biplane design, constructed from lightweight materials and battery powered. The prototype, called MyBird, was built with a 250 € budget, reuse existing materials as well as low cost solutions. Although the team's initial idea was to build a light radio controlled robot, time limitations along with setbacks involving the required electrical components led to a light but not radio controlled prototype. The team, from the experience gathered, made a number of future improvement suggestions, namely, the addition of radio control and a camera and the adoption of articulated monoplane design instead of the current biplane design for the wings.
Resumo:
This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
This work uses surface imprinting to design a novel smart plastic antibodymaterial (SPAM) for Haemoglobin (Hb). Charged binding sites are described here for the first time to tailor plastic antibody nanostructures for a large size protein such as Hb. Its application to design small, portable and low cost potentiometric devices is presented. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its ionic interaction with charged vinyl monomers. A neutral polymeric matrix was created around these and the imprinted protein removed. Additional materials were designed in parallel acting as a control: a neutral imprinted material (NSPAM), obtained by removing the charged monomers from the procedure, and the Non-Imprinted (NI) versions of SPAM and NSPAM by removing the template. SEM analysis confirmed the surface modification of the silica nanoparticles. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Electromotive force (emf) variations were detected only for selective membranes having a lipophilic anionic additive in the membrane. The presence of Hb inside these membranes was evident and confirmed by FTIR, optical microscopy and Raman spectroscopy. The best performance was found for SPAM-based selective membranes with an anionic lipophilic additive, at pH 5. The limits of detection were 43.8 mg mL 1 and linear responses were obtained down to 83.8 mg mL 1, with an average cationic slope of +40 mV per decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results.
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2’-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The Anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented proposal favored Ab/Ag affinity. The immunosensor design was evaluated by Quartz-Crystal microbalance with Dissipation, Atomic Force Microscopy, Electrochemical Impedance Spectroscopy (EIS) and Square-Wave Voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charged transfer resistance across the electrochemical sep-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from Glucose, Urea and Creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN) < 500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10−5 to 1 × 10−10 and 1 × 10−3 to 1 × 10−8 mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10−8 mol/L) SMX for a sub-Nernstian slope of −40.3 mV/decade from 5.0 × 10−8 to 2.4 × 10−5 mol/L.
Resumo:
As of today, AUTOSAR is the de facto standard in the automotive industry, providing a common software architec- ture and development process for automotive applications. While this standard is originally written for singlecore operated Elec- tronic Control Units (ECU), new guidelines and recommendations have been added recently to provide support for multicore archi- tectures. This update came as a response to the steady increase of the number and complexity of the software functions embedded in modern vehicles, which call for the computing power of multicore execution environments. In this paper, we enumerate and analyze the design options and the challenges of porting AUTOSAR-based automotive applications onto multicore platforms. In particular, we investigate those options when considering the emerging many- core architectures that provide a more scalable environment than the traditional multicore systems. Such platforms are suitable to enable massive parallel execution, and their design is more suitable for partitioning and isolating the software components.