875 resultados para Parallel
Resumo:
[EN] Today, science is difficult to pursue because funding is so tenuous. In such a financial climate, researchers need to consider parallel alternatives to ensure that scientific research can continue. Based on this thinking, we created BIOCEANSolutions, a company born of a research group. A great variety of environmental regulations and standards have emerged over recent years with the purpose of protecting natural ecosystems. These have enabled us to link our research to the market of environmental management. Marine activities can alter environmental conditions, resulting in changes in physiological states, species diversity, abundance, and biomass in the local biological communities. In this way, we can apply our knowledge, to plankton ecophysiology and biochemical oceanography. We measure enzyme activities as bio-indicators of energy metabolism and other physiological rates and biologic-oceanographic processes in marine organisms. This information provides insight into the health of marine communities, the stress levels of individual organisms, and potential anomalies that may be affecting them. In the process of verifying standards and complying with regulations, we can apply our analytic capability and knowledge. The main analyses that we offer are: (1) the activity of the electron transport system (ETS) or potential respiration (Φ), (2) the physiological measurement of respiration (oxygen consumption), (3) the activity of Isocitrate dehydrogenase (IDH), (4) the respiratory CO2 production, and (5) the activity of Glutamate dehydrogenase (GDH) and (6) the physiological measurement of ammonium excretion. In addition, our experience in a productive research group allows us to pursue and develop technical-experimental activities such as marine and freshwater aquaculture, oceanographic field sampling, as well as providing guidance, counseling, and academic services. In summary, this new company will permit us to create a symbiosis between public and private sectors that serve clients and will allow us to grow and expand as a research team.
Resumo:
Singularities of robot manipulators have been intensely studied in the last decades by researchers of many fields. Serial singularities produce some local loss of dexterity of the manipulator, therefore it might be desirable to search for singularityfree trajectories in the jointspace. On the other hand, parallel singularities are very dangerous for parallel manipulators, for they may provoke the local loss of platform control, and jeopardize the structural integrity of links or actuators. It is therefore utterly important to avoid parallel singularities, while operating a parallel machine. Furthermore, there might be some configurations of a parallel manipulators that are allowed by the constraints, but nevertheless are unreachable by any feasible path. The present work proposes a numerical procedure based upon Morse theory, an important branch of differential topology. Such procedure counts and identify the singularity-free regions that are cut by the singularity locus out of the configuration space, and the disjoint regions composing the configuration space of a parallel manipulator. Moreover, given any two configurations of a manipulator, a feasible or a singularity-free path connecting them can always be found, or it can be proved that none exists. Examples of applications to 3R and 6R serial manipulators, to 3UPS and 3UPU parallel wrists, to 3UPU parallel translational manipulators, and to 3RRR planar manipulators are reported in the work.
Resumo:
[EN]A new parallel algorithm for simultaneous untangling and smoothing of tetrahedral meshes is proposed in this paper. We provide a detailed analysis of its performance on shared-memory many-core computer architectures. This performance analysis includes the evaluation of execution time, parallel scalability, load balancing, and parallelism bottlenecks. Additionally, we compare the impact of three previously published graph coloring procedures on the performance of our parallel algorithm. We use six benchmark meshes with a wide range of sizes. Using these experimental data sets, we describe the behavior of the parallel algorithm for different data sizes. We demonstrate that this algorithm is highly scalable when it runs on two different high-performance many-core computers with up to 128 processors...
Resumo:
The 3-UPU three degrees of freedom fully parallel manipulator, where U and P are for universal and prismatic pair respectively, is a very well known manipulator that can provide the platform with three degrees of freedom of pure translation, pure rotation or mixed translation and rotation with respect to the base, according to the relative directions of the revolute pair axes (each universal pair comprises two revolute pairs with intersecting and perpendicular axes). In particular, pure translational parallel 3-UPU manipulators (3-UPU TPMs) received great attention. Many studies have been reported in the literature on singularities, workspace, and joint clearance influence on the platform accuracy of this manipulator. However, much work has still to be done to reveal all the features this topology can offer to the designer when different architecture, i.e. different geometry are considered. Therefore, this dissertation will focus on this type of the 3-UPU manipulators. The first part of the dissertation presents six new architectures of the 3-UPU TPMs which offer interesting features to the designer. In the second part, a procedure is presented which is based on some indexes, in order to allows the designer to select the best architecture of the 3-UPU TPMs for a given task. Four indexes are proposed as stiffness, clearance, singularity and size of the manipulator in order to apply the procedure.
Resumo:
Hybrid technologies, thanks to the convergence of integrated microelectronic devices and new class of microfluidic structures could open new perspectives to the way how nanoscale events are discovered, monitored and controlled. The key point of this thesis is to evaluate the impact of such an approach into applications of ion-channel High Throughput Screening (HTS)platforms. This approach offers promising opportunities for the development of new classes of sensitive, reliable and cheap sensors. There are numerous advantages of embedding microelectronic readout structures strictly coupled to sensing elements. On the one hand the signal-to-noise-ratio is increased as a result of scaling. On the other, the readout miniaturization allows organization of sensors into arrays, increasing the capability of the platform in terms of number of acquired data, as required in the HTS approach, to improve sensing accuracy and reliabiity. However, accurate interface design is required to establish efficient communication between ionic-based and electronic-based signals. The work made in this thesis will show a first example of a complete parallel readout system with single ion channel resolution, using a compact and scalable hybrid architecture suitable to be interfaced to large array of sensors, ensuring simultaneous signal recording and smart control of the signal-to-noise ratio and bandwidth trade off. More specifically, an array of microfluidic polymer structures, hosting artificial lipid bilayers blocks where single ion channel pores are embededed, is coupled with an array of ultra-low noise current amplifiers for signal amplification and data processing. As demonstrating working example, the platform was used to acquire ultra small currents derived by single non-covalent molecular binding between alpha-hemolysin pores and beta-cyclodextrin molecules in artificial lipid membranes.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
Parallel mechanisms show desirable characteristics such as a large payload to robot weight ratio, considerable stiffness, low inertia and high dynamic performances. In particular, parallel manipulators with fewer than six degrees of freedom have recently attracted researchers’ attention, as their employ may prove valuable in those applications in which a higher mobility is uncalled-for. The attention of this dissertation is focused on translational parallel manipulators (TPMs), that is on parallel manipulators whose output link (platform) is provided with a pure translational motion with respect to the frame. The first part deals with the general problem of the topological synthesis and classification of TPMs, that is it identifies the architectures that TPM legs must possess for the platform to be able to freely translate in space without altering its orientation. The second part studies both constraint and direct singularities of TPMs. In particular, special families of fully-isotropic mechanisms are identified. Such manipulators exhibit outstanding properties, as they are free from singularities and show a constant orthogonal Jacobian matrix throughout their workspace. As a consequence, both the direct and the inverse position problems are linear and the kinematic analysis proves straightforward.
Resumo:
Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.
Resumo:
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.
Resumo:
Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations.
Resumo:
This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.