997 resultados para Pain modulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Walking in patients with chronic low back pain (cLBP) is characterized by motor control adaptations as a protective strategy against further injury or pain. The purpose of this study was to compare the preferred walking speed, the biomechanical and the energetic parameters of walking at different speeds between patients with cLBP and healthy men individually matched for age, body mass and height. METHODS: Energy cost of walking was assessed with a breath-by-breath gas analyser; mechanical and spatiotemporal parameters of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 13 men with cLBP and 13 control men (CTR) during treadmill walking at standard (0.83, 1.11, 1.38, 1.67 m s(-1)) and preferred (PWS) speeds. Low back pain intensity (visual analogue scale, cLBP only) and perceived exertion (Borg scale) were assessed at each walking speed. RESULTS: PWS was slower in cLBP [1.17 (SD = 0.13) m s(-1)] than in CTR group [1.33 (SD = 0.11) m s(-1); P = 0.002]. No significant difference was observed between groups in mechanical work (P ≥ 0.44), spatiotemporal parameters (P ≥ 0.16) and energy cost of walking (P ≥ 0.36). At the end of the treadmill protocol, perceived exertion was significantly higher in cLBP [11.7 (SD = 2.4)] than in CTR group [9.9 (SD = 1.1); P = 0.01]. Pain intensity did not significantly increase over time (P = 0.21). CONCLUSIONS: These results do not support the hypothesis of a less efficient walking pattern in patients with cLBP and imply that high walking speeds are well tolerated by patients with moderately disabling cLBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Une lésion nerveuse périphérique est susceptible d'engendrer une douleur neuropathique caractérisée par des changements d'expression génique dans les neurones nociceptifs des ganglions spinaux. Parmi ces modifications, on note une augmentation transcriptionnelle du gène codant pour la guanosine triphosphate cyclohydrolase 1 (GCH1) considérée comme modulateur clé des douleurs neuropathiques périphériques1. La surexpression de la GCH1 induit alors une hausse de la concentration de la tétrahydrobiopterin (BH4), un cofacteur essentiel pour la production de catécholamines, de sérotonine et d'oxide nitrique dans les ganglions spinaux. La surexpression de ce cofacteur induit la production de ces neurotransmetteurs et contribue à l'augmentation de la sensibilité douloureuse. Dans ce travail, j'ai modulé l'expression de GCH1 par l'utilisation d'un vecteur viral adéno-associé. Tout d'abord, j'ai testé in vitro dans des cellules PC12 différentes molécules d'ARN interfèrent permettant la régulation négative de GCH1. Les cellules PC 12 contiennent constitutionnellement la GCH1 et sont donc intéressantes afin de tester et sélectionner un plasmide permettant une régulation négative efficace de cette molécule in vitro. Cela m'a permis de choisir après sélection de cellules par FACS et quantification protéique par Western blot les meilleurs sh-ARN à utiliser tant pour la régulation négative de GCH1 que pour le vecteur contrôle. J'ai ensuite co- transfecté ces plasmides avec le plasmide pDF6 dans des cellules HEK293T pour la production de mon vecteur viral (rAAV2/6) permettant la régulation négative de la GCH1 ainsi que de mon vecteur contrôle. Après avoir étudié deux voies d'injection chez le rat (dans le nerf sciatique et en intrathécal), j'ai retenu la voie intrathécale comme ayant le meilleur taux de transduction de mon vecteur viral au niveau des ganglions spinaux. Utiliser cette voie d'injection pour mon vecteur permet de cibler plus particulièrement les neurones nociceptifs des ganglions spinaux. J'ai ensuite étudié la modulation de la GCH1 et sa répercussion sur le développement et le maintien des douleurs neuropathiques dans le modèle animal « spared nerve injury » (SNI). Je n'ai pas obtenu de diminution de douleur ni au niveau comportemental ni au niveau moléculaire chez le rat. Ayant répété l'expérience chez la souris, j'ai obtenu une diminution significative de l'expression de la GCH1 au niveau de l'ARN messager. Je n'ai pas étudié l'efficacité de mon vecteur in vivo chez la souris car un autre groupe m'a devancé dans cette expérience et a publié une étude similaire montrant une régulation négative et efficace de la GCH1 sur les symptômes de douleur neuropathique. Mes résultats, associés à cette publication, démontrent la validité de mon hypothèse de départ et ouvrent de nouvelles perspectives thérapeutiques en prenant comme cible la production de BH4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Electroencephalogram (EEG) background reactivity is a potentially interesting outcome predictor in comatose patients, especially after cardiac arrest, but recent studies report only fair interrater reliability. Furthermore, there are no definite guidelines for its testing. We therefore investigated the EEG effect of standardized noxious stimuli in comatose patients not reactive to auditory stimuli. METHODS: In this prospective study we applied a protocol using three different painful stimuli (bilateral nipple pinching, pinprick at the nose base, finger-nail compression on each side), grouped in three distinct clusters with an alternated sequence, during EEG recordings in comatose patients. We only analyzed recordings showing any reactivity to pain. Fisher and χ2 tests were used as needed to assess contingency tables. RESULTS: Of 42 studies, 12 did not show any background reactivity, 2 presented SIRPIDs, and 2 had massive artefacts; we thus analyzed 26 EEGs recorded in 17 patients (4 women, 24%). Nipple pinching more frequently induced a change in EEG background activity (p<0.001), with a sensitivity of 97.4% for reactivity. Neither the order of the stimuli in the cluster (p=0.723), nor the cluster order (p=0.901) influenced the results. CONCLUSION: In this pilot study, bilateral, synchronous nipple pinching seems to be the most efficient method to test nociceptive EEG reactivity in comatose patients. This approach may enhance interrater reliability, but deserves confirmation in larger cohorts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the clinical characteristics of the orofacial pain of cardiac origin in patients visited when doing a treadmill exercise test, at the cardiology service of the Can Ruti Hospital in Badalona (Barcelona, Spain). Study design: The sample of that study included thirty patients visiteding when doing a treadmill exercise test, at the cardiology service. The questionnaire has been asked to a sample of 30 patients. Results: Eleven of the 30 patients included in this study presented craniofacial pain before or during the cardiac seizure. The location of the pain was bilateral, non-irradiated at the mandible in all cases. The intensity of the pain was from slight to severe. The frequency of the appearance of the pain was paroxysmal in 8 cases and constant in three cases, and the duration was from a few hours to a maximum of 14 days. Discussion: The cardiac pain in craniofacial structures is usually bilateral, compared to odontogenic pain which is always unilateral. The pain of cardiac origin is considered atypical because of its location, but about the 10 % of the cases, the cardiac ischemia has its primary manifestation in orofacial structures. Conclusions: Eleven patients referred a bilateral non-irradiated mandibular pain, with intensity from slight to severe, and with a paroxystic frequency in eight cases and a constant frequency in three cases. Just one patient referred pain during the treadmill exercise test. In all cases the pain disappeared after the cardiac surgery or the administration of vasodilators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in β band) in slices of the mouse anterior cingulate cortex (ACC). We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets (PNNs) enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia (SZ) patients who display prefrontal anomalies of both the dopaminergic system and the PNNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le syndrome douloureux fémoro-patellaire (SDFP) est l'une des causes les plus fréquentes de douleur antérieure du genou chez l'adolescent et l'adulte. De par son étiologie complexe, multifactorielle et encore mal comprise, sa prise en charge est un important challenge pour le praticien. Le diagnostic se fait principalement sur l'anamnèse et l'examen clinique du genou mais aussi de l'ensemble du membre inférieur, pouvant parfois nécessiter la réalisation d'une imagerie. Le traitement est dans la grande majorité des cas conservateur, principalement axé sur la rééducation avec de la physiothérapie ciblée et personnalisée. Le traitement chirurgical est réservé aux cas présentant une anomalie structurelle causale. Patellofemoral pain syndrome (PFPS) is one of the most frequent cause of anterior knee pain in adolescents and adults. Due to its complex etiology, which is multifactorial and still poorly understood, its management is a major challenge for the practitioner. The diagnosis is made primarily on the history and clinical examination of the knee, but also of the entire lower limb, which may sometimes require the completion of imaging. The treatment is mostly conservative, focussing on rehabilitation with targeted and personalized therapy. Surgical treatment is reserved for cases with a causal structural lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Epidemiologic studies have suggested that flavonoid intake plays a critical role in the prevention of coronary heart disease. Because atherosclerosis is considered a low-grade inflammatory disease, some feeding trials have analyzed the effects of cocoa (an important source of flavonoids) on inflammatory biomarkers, but the results have been controversial. Objective: The objective was to evaluate the effects of chronic cocoa consumption on cellular and serum biomarkers related to atherosclerosis in high-risk patients. Design: Forty-two high-risk volunteers (19 men and 23 women; mean 6 SD age: 69.7 6 11.5 y) were included in a randomized crossover feeding trial. All subjects received 40 g cocoa powder with 500 mL skim milk/d (C+M) or only 500 mL skim milk/d (M) for 4 wk. Before and after each intervention period, cellular and serum inflammatory biomarkers related to atherosclerosis were evaluated. Results: Adherence to the dietary protocol was excellent. No significant changes in the expression of adhesion molecules on T lymphocyte surfaces were found between the C+M and M groups. However, in monocytes, the expression of VLA-4, CD40, and CD36 was significantly lower (P = 0.005, 0.028, and 0.001, respectively) after C+M intake than after M intake. In addition, serum concentrations of the soluble endothelium-derived adhesion molecules P-selectin and intercellular adhesion molecule-1 were significantly lower (both P = 0.007) after C+M intake than after M intake. Conclusions: These results suggest that the intake of cocoa polyphenols may modulate inflammatory mediators in patients at high risk of cardiovascular disease. These antiinflammatory effects may contribute to the overall benefits of cocoa consumption against atherosclerosis. This trial was registered in the Current Controlled Trials at London, International Standard Randomized Controlled Trial Number, at controlled-trials.com as ISRCTN75176807.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiated within the first 72hours of the rash, prescribing antiviral drugs reduces both acute neuralgia (AN) and later complications and especially postherpetic neuralgia (PHN). But their analgesic as well as preventative effect on AN and PHN is modest. Combination with analgesic drugs is more often needed for pain management. However, the pharmacological management of pain, in the context of old patients' frailty, co-morbidities and often polypharmacy, must be carefully considered. Based on analyses of the evidences from the literature, this review presents the therapeutic options we have at one's disposal and proposes a stepwise management for both AN and PHN specifically designed for aged population.