816 resultados para PROPYLENE COPOLYMERS
Resumo:
Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.
Resumo:
The dielectric properties of pure low to medium molecular weight poly(ethylene glycol) and poly(propylene glycol) and a variety of their salt complexes have been studied through the measurement of the dielectric permittivity and dielectric loss over a range of frequency and temperature. The major proportion of this study has been concerned with the examination of the nature of the interaction between mercuric chloride and poly(propylene glycol) (PPG). Other salt-poly-ether combinations have also been considered such as cobalt chloride-PPG cadmium chloride-PPG zinc chloride-PPG and ferric chloride-PEG (polyethylene glycol). Some of this work was also supported by chemical shift and spin-lattice Nuclear Magnetic Resonance (N.M.R.) spectroscopy. The dielectric permittivity data were analysed using the Onsager relation to calculate the mean dipole moment per dipolar unit. This approach was employed in the discussion of various models proposed for the structure of salt-polyether complexes. The effect of mercuric chloride on the statistical conformations of poly(propylene-glycol) was studied in a quantitative manner using the relationships of marchal-Benoit. The dielectric relaxation activation energy and mean energy difference between gauche and trans conformations of poly(propylene glycol) in the presence of mercuric chloride, both showed a distinct minimum when the concentration of mercuric chloride was close to 5 mole %. Opposite behaviour was observed for the Cole-Cole parameter. It was concluded that the majority of the dielectric data could be rationalised in terms of a 5-membered cyclic complex formed between mercuric chloride and PPG in which the complexed segment of the polyether-(OMeCH2CH2O)- adopted either gauche or cis conformations.
Resumo:
The problems associated with x-ray-transparent denture base are defined and conventional approaches to their solution are assessed. Consideration of elemental absorption parameters leads to the postulation that atoms such as zinc, and bromine, may be effective radiopacifiers over at least part of the clinical x-ray spectrum. These elements had hitherto been considered too light to be effective. Investigation of copolymers of methylmethacrylate and p-bromostyrene revealed no deleterious effects arising from the aromatically brominated monomer (aliphatic bromination caused UV destabilisation). For effective x-ray absorption a higher level of bromination would be necessary, but the expense of suitable compounds made further study unjustifiable. Incorporation of zinc atoms into the polymer was accomplished by copolymerisation of zinc acrylate with methylmethacrylate in solution. At high zinc levels this produced a powder copolymer convenient for addition to dental polymers in the dough moulding process. The resulting mouldings showed increasing brittleness at high loadings of copolymer. Fracture was shown to be through the powder particles rather than around them, indicating the source of weakness to be in the internal structure of the copolymer. The copolymer was expected to be cross-linked through divalent zinc ions and its insolubility and infusibility supported this. Cleavage of the ionic cross links with formic acid produced a zinc-free linear copolymer of high molecular weight. Addition of low concentrations of acrylic acid to the dough moulding monomer appeared to 'labilise' the cross links producing a more homogeneous moulding with adequate wet strength. Toxicologically the zinc-containing materials are satisfactory and though zinc is extracted at a measurable rate in an aqueous system, this is very small and should be acceptable over the life of a denture. In other respects the composite is quite satisfactory and though a marketable product is not claimed the system is considered worthy of further study.
Resumo:
The techno-economic implications of recycling the components of mixed plastics waste have been studied in a two-part investigation: (a) An economic survey of the prospects for plastics recycling, the plastics waste arisings from retailing, building, automotive, light engineering and chemical industries have been surveyed by mans of questionnaires and interviews. This was partially successful and indicated that very considerable quantities of relatively clean plastics packaging was available in major department chains and household stores. The possibility of devising collection systems for such sources, which do not lead to any extra cost, have been suggested. However, the household collection of plastics waste has been found to be uneconomic due to high cost of collection, transportation and lack of markets for the end products. (b) In a technical study of blends of PE/PP and PE/PS which are found in admixture in waste plastics, it has been shown that they exhibit poor mechanical properties due to incompatibility. Consequently reprocessing of such unsegregated blends results in products of little technological value. The inclusion of some commercial block and graft copolymers which behave as solid phase dispersants (SPES) increase the toughness of the blends (e.g. EPDM in PE/PP blend and SBS in PE/PS blend). Also, EPDM is found to be very effective for improving the toughness of single component polypropylene. However, the improved Technical properties of such blends have been accompanied by a fast rate of photo-oxidation and loss of toughness due to the presence of unsaturation in SPD's. The change in mechanical properties occurring during oven ageing and ultra-violet light accelerated weathering of these binary and ternary blends was followed by a viscoelastonetric technique (Rheovibron) over 9,, wide range of temperatures, impact resistance at room temperature (20-41'G) and changes in functional groups (i.e. carbonyl and trans-1,4-polybutadiene). Also the heat and light stability of single and mixed plastics to which thiol antioxidants were bound to SPE1 segment have been studied and compared with conventional antioxidants. The long-term performance of the mixed plastics containing SPE1 have been improved significantly by the use of conventional and bound antioxidants. It is concluded that an estimated amount of 30000 tonnes/year of plastics waste is available from department chains and household stores which can be converted to useful end products. This justifies pilot-experiments in collaboration with supermarkets, recyclers and converters by use of low cost SPD's and additives designed to make the materials more compatible.
Resumo:
High strength, high modulus carbon fibres are becoming increasingly important as high performance engineering materials. This thesis describes how they may be prepared by heat treatment from filaments spun from polyacrylonitrile and its copolymers. The chemistry of the first stages of heat treatment is very important in controlling the mechanical properties of the carbonised product. A cyclisation reaction has been found to be responsible for the relatively high thermal stability of pyrolysed polyacrylonitrile, but without oxidation the fibres degrade and fuse. An initial oxidation stage is, therefore, essential to the preparation of fibre of high orientation. The cyclised product of pyrolysis is probably a poly 1,4 dihydropiridine and oxidation converts this to aromatic structures, and cyclised structures containing carbonyl and other oxygenated groups. Oxidation is found to assist the carbon fibre preparation process, by producing a product which condenses at an earlier stage of heat treatment, before fusion can occur. Carbon fibre strength and modulus are dependent upon producing a highly oriented crystal structure. While oxidation of the polymer stabilises the fibre so as to prevent disorientation, further large increases in orientation, with a commensurate improvement in strength and modulus, can be obtained by stretching at temperatures above 1,700 °C. This process is analogous to the way fibre orientation is increased by the stretching of the precursor. A lamellar graphite structure can be created in high temperature fibre, by carefully controlling the degree of oxidation. This type of graphite can produce very high values of Young's modulus. More often, however, graphite fibre has a fibrillar fine structure, which is explicable in terms of continuous graphite ribbons. A ribbon model is the most satisfactory representation of the structure of carbon fibre, as it explains the mechanism of the development of long range order and the variation of Young's modulus with crystalline preferred orientation.
Resumo:
In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.
Resumo:
Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
The lipophilic dihydrofolate reductase (DHFR) inhibitor m-azidopyrimethamine (MZP) was investigated for suitability for development as a topical antipsoriatic agent. The clinical features and treatments for psoriasis were reviewed. High performance liquid chromatography (HPLC) was employed as the main analytical method, with UV spectroscopy being used in some cases. Reduction of the azido-group was proposed as a potential detoxification mechanism for MZP. The rates of reduction of a series of substituted phenyl azide compounds by dithiothreitol were investigated and found to depend on the substitution pattern of the aryl azide molecular, with electron deficient azides exhibiting faster rates of reduction in the system studied. The rates of reduction of MZP and analogous compounds were also studied using this model. The skin penetration of MZP was assessed using an in vitro hairless mouse skin model. The rate of permeation (flux) of MZP across hairless mouse skin was found to be dependent on the quantity of propylene glycol used as cosolvent in the vehicle and the pH. The use of a pretreatment regime of oleic acid in propylene glycol was shown to greatly increase the penetration of MZP through the hairless mouse skin as compared to application without pretreatment, or pretreatment with other penetration enhancers. The metabolism of MZP was studied in in vitro models comprising skin homogenates, SV-K14 human keratinocyte cell cultures and skin commensal bacterial cultures. No conversion of MZP to the corresponding amine was detected in any of the models. The growth inhibitory properties of MZP were investigated in an in vitro SV-K14 human keratinocyte cell culture model and compared with those of other DHFR inhibitors. [14C]-pyrimethamine was shown to be taken up by the SV-K14 keratinocytes.
Resumo:
The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.
Resumo:
There are currently few biomaterials which combine controlled degradation rates with ease of melt processability. There are however, many applications ranging from surgical fixation devices to drug delivery systems which require such combination properties. The work in this thesis is an attempt to increase the availability of such materials. Polyhydroxybutyrate-polyhydroxyvalerate copolymers are a new class of potentially biodegradable materials, although little quantitative data relating to their in vitro and in vivo degradation behaviour exists. The hydrolytic degradation of these copolymers has been examined in vitro under conditions ranging from `physiological' to extremes of pH and elevated temperature. Progress of the degradation process was monitored by weight loss and water uptake measurement, x-ray diffractometry, optical and electron microscopy, together with changes in molecular weight by gel permeation chromatography. The extent to which the degradation mechanism could be modified by forming blends with polysaccharides and polycaprolactone was also investigated. Influence of the valerate content, molecular weight, crystallinity, together with the physical form of the sample, the pH and the temperature of the aqueous medium on the hydrolytic degradation was investigated. Its progress was characterised by an initial increase in the wet weight, with concurrent decrease in the dry weight as the amorphous regions of the polymer are eroded, thereby producing an increase in matrix porosity. With the polysaccharide blends, this initial rate is dramatically affected, and erosion of the polysaccharide from the matrix markedly increases the internal porosity which leads to the eventual collapse of the matrix, a process which occurs, but less rapidly, in the degradation of the unblended polyhydroxybutyrate-polyhydroxyvalerate copolymers. Surface energy measurement and goniophotometry proved potentially useful in monitoring the early stages of the degradation, where surface rather than bulk processes predominate and are characterised by little weight loss.
Resumo:
Several cationic initiator systems were developed and used to polymerise oxetane with two oxonium ion initiator systems being investigated in depth. The first initiator system was generated by the elimination of a chloride group from a chloro methyl ethyl ether. Adding a carbonyl co-catalyst to a carbocationic centre generated the second initiator system. It was found that the anion used to stabilise the initiator was critical to the initial rate of polymerisation of oxetane with hexafluoroantimonate resulting in the fastest polymerisations. Both initiator systems could be used at varying monomer to initiator concentrations to control the molecular number average, Mn, of the resultant polymer. Both initiator systems showed living characteristics and were used to polymerise further monomers and generate higher molecular weight material and block copolymers. Oxetane and 3,3-dimethyl oxetane can both be polymerised using either oxonium ion initiator system in a variety of DCM or DCM/1,4-dioxane solvent mixtures. The level of 1,4-dioxane does have an impact on the initial rate of polymerisation with higher levels resulting in lower initial rates of polymerisation but do tend to result in higher polydispersities. The level of oligomer formation is also reduced as the level of 1,4-dioxane is increased. 3,3-bis-bromomethyl oxetane was also polymerised but a large amount of hyperbranching was seen at the bromide site resulting in a difficult to solvate polymer system. Multifunctional initiator systems were also generated using the halide elimination reactions with some success being achieved with 1,3,5-tris-bromomethyl-2,4,6-tris-methyl-benzene derived initiator system. This offered some control over the molecular number average of the resultant polymer system.
Resumo:
A simple overview of the methods used and the expected benefits of block copolymers in organic photovoltaic devices is given in this review. The description of the photovoltaic process makes it clear how the detailed self-assembly properties of block copolymers can be exploited. Organic photovoltaic technology, an inexpensive, clean and renewable energy source, is an extremely promising option for replacing fossil fuels. It is expected to deliver printable devices processed on flexible substrates using high-volume techniques. Such devices, however, currently lack the long-term stability and efficiency to allow organic photovoltaics to surpass current technologies. Block copolymers are envisaged to help overcome these obstacles because of their long term structural stability and their solid-state morphology being of the appropriate dimensions to efficiently perform charge collection and transfer to electrodes.
Resumo:
Zwitterionic compounds, or zwitterions, are electrically neutral compounds having an equal number of formal unit charges of opposite sign. In common polyzwitterions the zwitterionic groups are usually located in pendent groups rather than the backbone of the macromolecule. Polyzwitterions contain both the anion and cation in the same monomeric unit, unlike polyampholytes which can contain the anion and cation in different monomeric units. The use of cationic and anionic monomers (or monomers capable of becoming charged) in stoichiometric equivalent proportions produces charge-balanced polyampholyte copolymers. Hydrogel materials produced from zwitterionic monomers have been proposed for use and are used in many biomaterial applications but synthetic charge-balanced polyampholyte are less common. Certain properties of hydrogels which are important for their successful use as biomaterials, these include the equilibrium water content, mechanical, surface energy, oxygen permeability, swelling and the coefficient of friction. The zwitterionic monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) was synthesized with 2-hydroxyethly acrylate (HEMA) as the comonomer to produce a series of polyzwitterion hydrogels. To produce charged-balanced copolymer hydrogels two “cationic” monomers were selected; 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA) and an anionic monomer; 2-acrylamido 2,2 methylpropane sulphonic acid (AMPS). Two series’ of charge-balanced copolymers were synthesized from stoichiometric equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a terpolymer. The zwitterionic copolymer and both charge-balanced copolymers produced clear, cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar EWC’s along with similar mechanical and surface energy properties. The swelling of the zwitterionic copolymer displayed antipolyelectrolyte behavior whereas the charge-balanced copolymers displayed behaviour somewhere between this and a typical polyelectrolyte. This work describes some aspects of the polymerisation and properties of SPDA copolymers and charge-balanced (polyampholyte) copolymers relevant to their potential as biomedical / bioresponsive materials. The biomimetic nature of SPDA together with its compatibility with other monomers makes it a useful and complimentary addition to the building blocks of biomaterials.
Resumo:
Purpose: Lipids play a vital role at interfaces such as the tear film in the protection of the anterior eye. Their role is to act as lubricants and reduce surface and interfacial tension. Although there is a lack of appropriate methods to solubilize and dilute phospholipids to the tear film. Here, we report that styrene-maleic acid copolymers (PSMA), can form polymer–lipid complexes in the form of monodisperse nanometric particles, which can easily solubilise these phospholipid molecules by avoiding for example, the use of any kind of surfactant. Method: The interactions of PSMA with phospholipids have been studied by its adsorption from aqueous solutions into monolayers of dimyristoyl-phosphorylcholine (DMPC). The Langmuir trough (LT) technique is used to study this pH-dependant complex formation. The formed nanoparticles have been also analysed by 31P NMR, particle size distribution by light scattering (DLS) and morphology by electron microscopy (SEM). Results: The LT has been found to be a useful technique for in vitro simulation of in vivo lipid layer behaviour: The limiting surface pressure of unstable tear films ranges between 20 and 30 mN/m. More stable tear films show an increase in surface pressure, within the range of 35–45 mN/m. The DMPC monolayers have a limiting surface pressure of 38 mN/m (water), and 45 mN/m (pH 4 buffer), and the PSMA-DMPC complexes formed at pH 4 have a value of 42 mN/m, which resembles that of the stable tear film. The average particle size distribution is 53 ± 10 nm with a low polydispersity index (PDI) of 0.24 ± 0.03. Conclusions: New biocompatible and cheap lipid solubilising agents such as PSMA can be used for the study of the tear film composition and properties. These polymer–lipid complexes in the form of nanoparticles can be used to solubilise and release in a controlled way other hydrophobic molecules such as some drugs or proteins.