937 resultados para PROCESSING PARAMETERS
Resumo:
Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.
Resumo:
The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.
Resumo:
Dense ZrB2-ZrC and ZrB2-ZrC x∼0.67 composites have been produced by reactive hot pressing (RHP) of stoichiometric and nonstoichiometric mixtures of Zr and B4C powders at 40 MPa and temperatures up to 1600 °C for 30 minutes. The role of Ni addition on reaction kinetics and densification of the composites has been studied. Composites of ∼97 pct relative density (RD) have been produced with the stoichiometric mixture at 1600 °C, while the composite with ∼99 pct RD has been obtained with excess Zr at 1200 °C, suggesting the formation of carbon deficient ZrC x that significantly aids densification by plastic flow and vacancy diffusion mechanism. Stoichiometric and nonstoichiometric composites have a hardness of ∼20 GPa. The grain sizes of ZrB2 and ZrC x∼0.67 are ∼0.6 and 0.4 μm, respectively, which are finer than those reported in the literature.
Resumo:
Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.
Resumo:
Understanding of the shape and size of different features of the human body from scanned data is necessary for automated design and evaluation of product ergonomics. In this paper, a computational framework is presented for automatic detection and recognition of important facial feature regions, from scanned head and shoulder polyhedral models. A noise tolerant methodology is proposed using discrete curvature computations, band-pass filtering, and morphological operations for isolation of the primary feature regions of the face, namely, the eyes, nose, and mouth. Spatial disposition of the critical points of these isolated feature regions is analyzed for the recognition of these critical points as the standard landmarks associated with the primary facial features. A number of clinically identified landmarks lie on the facial midline. An efficient algorithm for detection and processing of the midline, using a point sampling technique, is also presented. The results obtained using data of more than 20 subjects are verified through visualization and physical measurements. A color based and triangle skewness based schemes for isolation of geometrically nonprominent features and ear region are also presented. [DOI: 10.1115/1.3330420]
Resumo:
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.
Resumo:
Accurate and stable time series of geodetic parameters can be used to help in understanding the dynamic Earth and its response to global change. The Global Positioning System, GPS, has proven to be invaluable in modern geodynamic studies. In Fennoscandia the first GPS networks were set up in 1993. These networks form the basis of the national reference frames in the area, but they also provide long and important time series for crustal deformation studies. These time series can be used, for example, to better constrain the ice history of the last ice age and the Earth s structure, via existing glacial isostatic adjustment models. To improve the accuracy and stability of the GPS time series, the possible nuisance parameters and error sources need to be minimized. We have analysed GPS time series to study two phenomena. First, we study the refraction in the neutral atmosphere of the GPS signal, and, second, we study the surface loading of the crust by environmental factors, namely the non-tidal Baltic Sea, atmospheric load and varying continental water reservoirs. We studied the atmospheric effects on the GPS time series by comparing the standard method to slant delays derived from a regional numerical weather model. We have presented a method for correcting the atmospheric delays at the observational level. The results show that both standard atmosphere modelling and the atmospheric delays derived from a numerical weather model by ray-tracing provide a stable solution. The advantage of the latter is that the number of unknowns used in the computation decreases and thus, the computation may become faster and more robust. The computation can also be done with any processing software that allows the atmospheric correction to be turned off. The crustal deformation due to loading was computed by convolving Green s functions with surface load data, that is to say, global hydrology models, global numerical weather models and a local model for the Baltic Sea. The result was that the loading factors can be seen in the GPS coordinate time series. Reducing the computed deformation from the vertical time series of GPS coordinates reduces the scatter of the time series; however, the long term trends are not influenced. We show that global hydrology models and the local sea surface can explain up to 30% of the GPS time series variation. On the other hand atmospheric loading admittance in the GPS time series is low, and different hydrological surface load models could not be validated in the present study. In order to be used for GPS corrections in the future, both atmospheric loading and hydrological models need further analysis and improvements.
Resumo:
Solar flares were first observed by plain eye in white light by William Carrington in England in 1859. Since then these eruptions in the solar corona have intrigued scientists. It is known that flares influence the space weather experienced by the planets in a multitude of ways, for example by causing aurora borealis. Understanding flares is at the epicentre of human survival in space, as astronauts cannot survive the highly energetic particles associated with large flares in high doses without contracting serious radiation disease symptoms, unless they shield themselves effectively during space missions. Flares may be at the epicentre of man s survival in the past as well: it has been suggested that giant flares might have played a role in exterminating many of the large species on Earth, including dinosaurs. Having said that prebiotic synthesis studies have shown lightning to be a decisive requirement for amino acid synthesis on the primordial Earth. Increased lightning activity could be attributed to space weather, and flares. This thesis studies flares in two ways: in the spectral and the spatial domain. We have extracted solar spectra using three different instruments, namely GOES (Geostationary Operational Environmental Satellite), RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and XSM (X-ray Solar Monitor) for the same flares. The GOES spectra are low resolution obtained with a gas proportional counter, the RHESSI spectra are higher resolution obtained with Germanium detectors and the XSM spectra are very high resolution observed with a silicon detector. It turns out that the detector technology and response influence the spectra we see substantially, and are important to understanding what conclusions to draw from the data. With imaging data, there was not such a luxury of choice available. We used RHESSI imaging data to observe the spatial size of solar flares. In the present work the focus was primarily on current solar flares. However, we did make use of our improved understanding of solar flares to observe young suns in NGC 2547. The same techniques used with solar monitors were applied with XMM-Newton, a stellar X-ray monitor, and coupled with ground based Halpha observations these techniques yielded estimates for flare parameters in young suns. The material in this thesis is therefore structured from technology to application, covering the full processing path from raw data and detector responses to concrete physical parameter results, such as the first measurement of the length of plasma flare loops in young suns.
Resumo:
A Linear Processing Complex Orthogonal Design (LPCOD) is a p x n matrix epsilon, (p >= n) in k complex indeterminates x(1), x(2),..., x(k) such that (i) the entries of epsilon are complex linear combinations of 0, +/- x(i), i = 1,..., k and their conjugates, (ii) epsilon(H)epsilon = D, where epsilon(H) is the Hermitian (conjugate transpose) of epsilon and D is a diagonal matrix with the (i, i)-th diagonal element of the form l(1)((i))vertical bar x(1)vertical bar(2) + l(2)((i))vertical bar x(2)vertical bar(2)+...+ l(k)((i))vertical bar x(k)vertical bar(2) where l(j)((i)), i = 1, 2,..., n, j = 1, 2,...,k are strictly positive real numbers and the condition l(1)((i)) = l(2)((i)) = ... = l(k)((i)), called the equal-weights condition, holds for all values of i. For square designs it is known. that whenever a LPCOD exists without the equal-weights condition satisfied then there exists another LPCOD with identical parameters with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1. This implies that the maximum possible rate for square LPCODs without the equal-weights condition is the same as that or square LPCODs with equal-weights condition. In this paper, this result is extended to a subclass of non-square LPCODs. It is shown that, a set of sufficient conditions is identified such that whenever a non-square (p > n) LPCOD satisfies these sufficient conditions and do not satisfy the equal-weights condition, then there exists another LPCOD with the same parameters n, k and p in the same complex indeterminates with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1.
Resumo:
In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.