903 resultados para POTASSIUM-CHANNEL TOXIN
Resumo:
This animated PowerPoint shows students how to reset their zapper handsets to use the default communication channel (41). If students press the GO button on their handset they may inadvertently change the channel and will not be able to vote. It only takes a few seconds to reset - essentially you press GO - 4 - 1 - GO and it should work again.
Resumo:
Considers bandpass filters, Huffman coding, arithmetic coding and Hamming coding.
Resumo:
Considers channel capacity, coding rate, repetition code, Hamming code, Hamming distance
Resumo:
La presente investigación analiza el papel que desempeñó la cadena Fox News Channel en el diseño de la política exterior de los Estados Unidos, frente a la iniciativa por el reconocimiento de Palestina ante las Naciones Unidas, en septiembre del 2011. Para ello se realizó una articulación teórica, a través de la cual se explica la importancia que juegan los medios de comunicación en el diseño de la política exterior y la forma en cómo estos, pueden lograr influir en este proceso.
Resumo:
This paper reviews a study to compare two commercially available single-channel tactile aids for the deaf.
Resumo:
This paper presents the narration for an educational video on cochlear implants and the implantation process aimed at parents and teachers of hearing-impaired children.
Resumo:
This paper presents observations on the effects of a single-channel cochlear implant on a seven year-old hearing impaired child.
Resumo:
This paper examines the results of testing five severely hearing impaired children using a special binaural system with s single amplification channel and two attenuators, allowing presentation of the stimulus materials monaurally or at different relative levels to the two ears.
Resumo:
There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without the drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems.
Resumo:
The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha(-1) yr(-1)) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from -5 (+N, drained) to +9 (no N and undrained) kg K ha(-1) yr(-1) and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching.
Resumo:
A set of lysimeter based experiments was carried out during 2000/01 to evaluate the impact of soil type and grassland management on potassium (K) leaching. The effects of (1) four soil textures (sand, loam, loam over chalk and clay), (2) grazing and cutting (with farmyard manure application), and (3) K applied as inorganic fertilizer, dairy slurry or a mixture of both sources were tested. Total K losses in the clay soil were more than twice those in the sand soil (13 and 6 kg K ha(-1), respectively) because of the development of preferential flow in the clay soil. They were also greater in the cut treatment than in the grazed treatment (82 and 51 kg K ha(-1), respectively; P less than or equal to0.01), associated with a 63% increase of K concentration in the leachates from the former (6.7 +/- 0.28 and 4.1 +/- 0.22 mg K L-1 for cut and grazed, respectively; P less than or equal to0.01) because of the K input from the farmyard manure. The source of fertilizer did not affect total K losses or the average K concentration in the leachates (P >0.05), but it changed the pattern of these over time.