918 resultados para POSTMORTEM HIPPOCAMPUS
Resumo:
Rationale Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. Objectives We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Methods Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. Results A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. Conclusions The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.
Resumo:
NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA.
Resumo:
Previous studies have suggested that gamma-aminobutyric acid-B (GABA(B)) receptor agonists effectively reduce ethanol intake. The quantification using real-time polymerase chain reaction of Gabbr1 and Gabbr2 mRNA from the prefrontal cortex, hypothalamus, hippocampus, and striatum in mice exposed to an animal model of the addiction developed in our laboratory was performed to evaluate the involvement of the GABAB receptor in ethanol consumption. We used outbred, Swiss mice exposed to a three-bottle free-choice model (water, 5% v/v ethanol, and 10% v/v ethanol) that consisted of four phases: acquisition (AC), withdrawal (W), reexposure (RE), and quinine-adulteration (AD). Based on individual ethanol intake, the mice were classified into three groups: "addicted" (A group; preference for ethanol and persistent consumption during all phases), "heavy" (H group; preference for ethanol and a reduction in ethanol intake in the AD phase compared to AC phase), and "light" (L group; preference for water during all phases). In the prefrontal cortex in the A group, we found high Gabbr1 and Gabbr2 transcription levels, with significantly higher Gabbr1 transcription levels compared with the C (ethanol-naive control mice). L, and H groups. In the hippocampus in the A group, Gabbr2 mRNA levels were significantly lower compared with the C, L, and H groups. In the striatum, we found a significant increase in Gabbr1 transcription levels compared with the C, L, and H groups. No differences in Gabbr1 or Gabbr2 transcription levels were observed in the hypothalamus among groups. In summary, Gabbr1 and Gabbr2 transcription levels were altered in cerebral areas related to drug taking only in mice behaviorally classified as "addicted" drinkers, suggesting that these genes may contribute to high and persistent ethanol consumption. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the human population, characterized by a spectrum of neuropathological abnormalities that results in memory impairment and loss of other cognitive processes as well as the presence of non-cognitive symptoms. Transcriptomic analyses provide an important approach to elucidating the pathogenesis of complex diseases like AD, helping to figure out both pre-clinical markers to identify susceptible patients and the early pathogenic mechanisms to serve as therapeutic targets. This study provides the gene expression profile of postmortem brain tissue from subjects with clinic-pathological AD (Braak IV, V, or V and CERAD B or C; and CDR >= 1), preclinical AD (Braak IV, V, or VI and CERAD B or C; and CDR = 0), and healthy older individuals (Braak <= II and CERAD 0 or A; and CDR = 0) in order to establish genes related to both AD neuropathology and clinical emergence of dementia. Based on differential gene expression, hierarchical clustering and network analysis, genes involved in energy metabolism, oxidative stress, DNA damage/repair, senescence, and transcriptional regulation were implicated with the neuropathology of AD; a transcriptional profile related to clinical manifestation of AD could not be detected with reliability using differential gene expression analysis, although genes involved in synaptic plasticity, and cell cycle seems to have a role revealed by gene classifier. In conclusion, the present data suggest gene expression profile changes secondary to the development of AD-related pathology and some genes that appear to be related to the clinical manifestation of dementia in subjects with significant AD pathology, making necessary further investigations to better understand these transcriptional findings on the pathogenesis and clinical emergence of AD.
Resumo:
The effects of three types of global ischemia by occlusion of carotid artery on motor and exploratory behaviors of Gerbils were evaluated by the Activity Cage and Rota rod tests. Animals were divided based on two surgical criteria: unilateral (UNI) or bilateral (BIL) carotid occlusion, with (REP) or without (OCL) reperfusion; and their behavior was evaluated on the fourth (4) or sixth (6) day. There was reduction of cell number in striatum, motor cortex M1 area, and hippocampal CA1 area in all groups in comparison to control animals. For M1 area and striatum, the largest reduction was observed in UNI6, UNI4, and BIL4 groups. Neuronal loss was also observed in CA1 area of BIL4 rodents. There was a decrease in crossings and rearings in all groups in activity cage test, compared to control. Reperfusion, unilateral and bilateral occlusion groups showed decrease in crossings. Only the BIL4 showed a decrease of rearing. In the Rota rod test, except the UNIOCL6, the groups showed a decrease in the balance in comparison to control. Both groups with REP4 showed a major decrease in balance. These findings suggest that both unilateral and bilateral carotid occlusions with reperfusion produce impairments of motor and exploratory behavior. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Intranasal inoculation of equid herpesvirus type-1 (EHV-1) Brazilian strains A4/72 and A9/92 induced an acute and lethal infection in four different inbred mouse strains. Clinical and neurological signs appeared between the 2nd and 3rd day post inoculation (dpi) and included weight loss, ruffled fur, a hunched posture, crouching in corners, nasal and ocular discharges, dyspnoea, dehydration and increased salivation. These signs were followed by increased reactivity to external stimulation, seizures, recumbency and death. The virus was recovered consistently from the brain and viscera of all mice with neurological signs. Histopathological changes consisted of leptomeningitis, focal haemorrhage, ventriculitis, neuronal degeneration and necrosis, neuronophagia, non-suppurative inflammation, multifocal gliosis and perivascular infiltration of polymorphonuclear and mononuclear cells. Immunohistochemical examination demonstrated that EHV-1 strains A4/72 and A9/92 replicated in neurons of the olfactory bulb, the cortex and the hippocampus. In contrast, mice inoculated with the EHV-1 Brazilian strain A3/97 showed neither weight loss nor apparent clinical or neurological signs; however, the virus was recovered consistently from their lungs at 3 dpi. These three EHV-1 strains showed distinct degrees of virulence and tissue tropism in mice. EHV-1 strains A4/72 and A9/92 exhibited a high degree of central nervous system tropism with neuroinvasion and neurovirulence. EHV-1 strain A3/97 was not neurovirulent despite being detected in the brains of infected BALB/c nude mice. These findings indicate that several inbred mouse strains are susceptible to neuropathogenic EHV-1 strains and should be useful models for studying the pathogenesis and mechanisms contributing to EHV-induced myeloencephalopathy in horses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Faculty of Medicine University of Sao Paulo
Resumo:
Systemic injection of pilocarpine in rodents induces status epilepticus (SE) and reproduces the main characteristics of temporal lobe epilepsy (TLE). Different mechanisms are activated by SE contributing to cell death and immune system activation. We used BALB/c nude mice, a mutant that is severely immunocompromised, to characterize seizure pattern, neurochemical changes, cell death and c-Fos activation secondarily to pilocarpine-induced SE. The behavioral seizures were less severe in BALB/c nude than in BALB/c wild type mice. However, nude mice presented more tonic clonic episodes and higher mortality rate during SE. The c-Fos expression was most prominent in the caudate-putamen, CA3 (p < 0.05), dentate gyrus, entorhinal cortex (p < 0.001), basolateral nucleus of amygdala (p < 0.01) and piriform cortex (p < 0.05) of BALB/c nude mice than of BALB/c. Besides, nude mice subjected to SE presented high number of Fluorojade-B (FJB) stained cells in the piriform cortex, amygdala (p < 0.05) and hilus (p < 0.05) in comparison with BALB/c mice. A significant increase in the level of glutamate and GABA was found in the hippocampus and cortex of BALB/c mice presenting SE in comparison to controls. However, the level of glutamate was higher in the brains of BALB nude mice than in the brains of BALB/c wild type mice, while the levels of GABA were unchanged. These results indicate that the brains of immunodeficient nude mice are more vulnerable to the deleterious effects of pilocarpine-induced SE as they present intense activation, increased glutamate levels and more cell death. Published by Elsevier B.V.
Resumo:
Nitric oxide (NO) is an atypical neurotransmitter that has been related to the pathophysiology of major depression disorder. Increased plasma NO levels have been reported in depressed and suicidal patients. Inhibition of neuronial nitric oxide synthase (nNOS), on the other hand, induces antidepressant effects in clinical and pre-clinical trials. The mechanisms responsible for the antidepressant-like effects of nNOS inhibitors, however, are not completely understood. In this study, genomic and proteomic analyses were used to investigate the effects of the preferential nNOS inhibitor 7-nitroindazole (7-NI) on changes in global gene and protein expression in the hippocampus of rats submitted to forced swimming test (FST). Chronic treatment (14 days, i.p.) with imipramine (15 mg/kg daily) or 7-NI (60 mg/kg daily) significantly reduced immobility in the FST. Saturation curves for Serial analysis of gene expression libraries showed that the hippocampus of animals submitted to FST presented a lower number of expressed genes compared to non-FST stressed groups. Imipramine, but not 7-NI, reverted this effect. GeneGo analyses revealed that genes related to oxidative phosphorylation, apoptosis and survival controlled by HTR1A signaling and cytoskeleton remodeling controlled by Rho GTPases were significantly changed by FST. 7-NI prevented this effect. In addition, 7-NI treatment changed the expression of genes related to transcription in the cAMP response element-binding pathway. Therefore, this study suggests that changes in oxidative stress and neuroplastic processes could be involved in the antidepressant-like effects induced by nNOS inhibition.
Resumo:
The use of addictive drugs can lead to long-term neuroplastic changes in the brain, including behavioral sensitization, a phenomenon related to addiction. Environmental enrichment (EE) is a strategy used to study the effect of environment on the response to several manipulations, including treatment with addictive drugs. Brain-derived neurotrophic factor (BDNF) has been associated with behaviors related to ethanol addiction. The aim of the present study was to evaluate the effects of EE on ethanol-induced behavioral sensitization and BDNF expression. Mice were exposed to EE and then repeatedly treated with a low dose (1.8 g/kg) of ethanol. Another group of mice was first subjected to repeated ethanol treatment according to the behavioral sensitization protocol and then exposed to EE. Environmental enrichment prevented the development of ethanol-induced behavioral sensitization and blocked behavioral sensitization in sensitized mice. Both repeated ethanol and EE decreased BDNF levels in the prefrontal cortex but not in the hippocampus. However, BDNF levels were lower in ethanol-treated mice exposed to EE. These findings suggest that EE can act on the mechanisms implicated in behavioral sensitization, a model for drug-induced neuroplasticity and relapse. Additionally, EE alters BDNF levels, which regulate addiction-related behaviors.
Resumo:
Introduction: Impairments in facial emotion recognition (PER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the alpha 1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Material and methods: Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a PER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. Results: The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Limitations: Sample size. Conclusion: The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, alpha-neoendorphin, beta-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The in vitro stability of cocaine in horse blood, sheep vitreous humour (VH) and homogenised deer muscle is described. The stability of cocaine in horse blood was of interest because many toxicology laboratories utilise horse blood for the preparation of calibration and check standards and the latter are typically stored during routine use. The storage stability of cocaine in human VH and muscle has not been previously reported. In the absence of blank human VH and muscle, cocaine stability under varying conditions was demonstrated in animal tissues. Blood and VH were stored with and without addition of NaF at room temperature (RT), 4 degrees C and -18 degrees C for 84 days. Muscle homogenates were prepared in water, water/2% NaF, and phosphate buffer (pH 6.0)/2% NaF, and stored for 31 days at RT, 4 degrees C and -18 degrees C. Cocaine stability in human muscle obtained from cocaine positive forensic cases was assessed following storage at -18 degrees C for 13 months. Cocaine and benzoylecgonine (BZE) were extracted using SPE and quantified by GC-MS/MS. Cocaine was stable for 7 days in refrigerated (4 degrees C) horse blood fortified with 1 and 2% NaF. In the absence of NaF, cocaine was not detectable by day 7 in blood stored at RT and 4 degrees C and had declined by 81% following storage at -18 degrees C. At 4 degrees C the rate of cocaine degradation in blood preserved with 2% NaF was significantly slower than with 1% NaF. The stability of cocaine in horse blood appeared to be less than that reported for human blood, probably attributable to the presence of carboxylesterase in horse plasma. Cocaine stored in VH at -18 degrees C was essentially stable for the study period whereas at 4 degrees C concentrations decreased by >50% in preserved and unpreserved VH stored for longer than 14 days. Fluoride did not significantly affect cocaine stability in VH. The stability of cocaine in muscle tissue homogenates significantly exceeded that in blood and VH at every temperature. In preserved and unpreserved samples stored at 4 degrees C and below, cocaine loss did not exceed 2%. The increased stability of cocaine in muscle was attributed to the low initial pH of post-mortem muscle. In tissue from one human case stored for 13 months at -18 degrees C the muscle cocaine concentration declined by only 15% (range: 5-22%). These findings promote the use of human muscle as a toxicological specimen in which cocaine may be detected for longer compared with blood or VH. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.