985 resultados para PM2.5
Resumo:
Na2[CgHllN2OgP].7H20, M r = 494.0,orthorhombic, C222~, a = 22.880 (7), b = 8.877 (3),c = 19.592 (9) A, Z = 8, V = 3979.2 A 3. The Cu Ka intensity data consisted of 1005 unique reflections. Final R -- 14.5%. This nucleotide shows no unusual conformational features. The uracil base has an anti conformation about the glycosidic bond (tpo o = 44.4°). The furanose ring conformation is C(2')-endo,gauchegauche with tpo o = -75.5 ° and ~Poc = 49"6°.
Resumo:
The crystal and molecular structures of the Tris salt of adenosine 5'-diphosphate were determined from X-ray diffraction data. The crystals are monoclinic, space P21, and Z = 2 with a=9.198 (2) A, b=6.894 (1) A, c=18.440 (4) A, and beta = 92.55 (2) degrees. Intensity data were collected on an automated diffractometer. The structure was solved by the heavy-atom technique and refined by least squares to R = 0.047. The ADP molecule adopts a folded conformation. The conformation about the glycosidic bond is anti. The conformation of the ribose ring is close to a perfect C(2')-endo-C-(3')-exo puckering. The conformation about C(4')-C(5') is gauche-gauche, similar to other nucleotide structures. The pyrophosphate chain displays a nearly eclipsed geometry when viewed down the P-P vector, unlike the staggered conformation observed in crystal structures of other pyrophosphates. The less favorable eclipsed conformation probably results from the observed association of Tris molecules with the polar diphosphate chain through electrostatic interactions and hydrogen bonds. Such interactions may play an important role in Tris-buffered aqueous solutions of nucleotides and metal ions.
Resumo:
The interaction of five crown ethers, 15-crown-5, 18-crown-6, benzo-15-crown-5, dibenzo-l8-crown-6, and dibenzo-24-crown-8 with 2, 3, 5, 6 - tetracyano pyrazine has been studied by spectroscopic methods. The association constants and thermodynamic parameters of the 1:1 complexes formed by donor ethers with the acceptor have been evaluated. There is an indication that oxygens of the ethers and aryl part of the ether act cooperatively in binding of the acceptor.
Resumo:
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 x 10(-3) S cm(-1) has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe an automated calorimeter for measurement of specific heat in the temperature range 10 K>T>0.5 K. It uses sample of moderate size (100–1000 mg), has a moderate precision and accuracy (2%–5%), is easy to operate and the measurements can be done quickly with He4 economy. The accuracy of this calorimeter was checked by measurement of specific heat of copper and that of aluminium near its superconducting transition temperature.
Resumo:
X-ray analysis of the ternary complex [Cu(5′-UMP)(im)2(H2O)]·4H2O, where 5′-UMP uridine-5′-monophosphate and IM = imidazole, reveals a novel metal binding mode of pyrimidine nucleotide through the ribose group.