983 resultados para PIGLIA RENZI, RICARDO EMILIO, 1941-
Resumo:
AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.
Resumo:
Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shock propagates. In this work the averageionization and the thermodynamicregimes of xenonplasmas are determined as functions of the matter density and temperature in a wide range of plasma conditions. The results obtained will be applied to characterize blastwaveslaunched in xenonclusters
Resumo:
The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.
Resumo:
The accurate computation of radioactive opacities is needed in several research fields such as astrophysics, magnetic fusion or ICF target physics analysis, in which the radiation transport is an important feature to determine in detail. Radiation transport plays an important role in the transport of energy in dense plasma and it is strongly influenced by the variation of plasma opacity with density and temperature, as well as, photon energy. In this work we present some new features of the opacity code ATMED [1]. This code has been designed to compute the spectral radioactive opacity as well as the Rosseland and Planck means for single element and mixture plasmas. The model presented is fast, stable and reasonably accurate into its range of application and it can be a useful tool to simulate ICF experiments in plasma laboratory.
Resumo:
El texto presenta el Sistema de Clasificación Climática Multicritério Geovitícola. Incluye los conceptos, metodologías y indices climáticos vitícolas, la página web internacional del Sistema CCM y aun bibliografías con diferenciados usos en el ámbito mundial. El Sistema ha sido utilizado para los estudios de los climas de las regiones vitícolas de los países iberoamericanos. En la pagina web del sistema http://www.cnpuv.embrapa.br/tecnologias/c cm/ se puede encontrar la información de referencia del Sistema.
Resumo:
Fundamental research and modelling in plasma atomic physics continue to be essential for providing basic understanding of many different topics relevant to high-energy-density plasmas. The Atomic Physics Group at the Institute of Nuclear Fusion has accumulated experience over the years in developing a collection of computational models and tools for determining the atomic energy structure, ionization balance and radiative properties of, mainly, inertial fusion and laser-produced plasmas in a variety of conditions. In this work, we discuss some of the latest advances and results of our research, with emphasis on inertial fusion and laboratory-astrophysical applications.
Resumo:
IBH spa M-BN-DP
Resumo:
Publicación del Real Ateneo de Vitoria