896 resultados para PEAT SWAMP FOREST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-table reconstructions from Holocene peatlands are increasingly being used as indicators of terrestrial palaeoclimate in many regions of the world. However, the links between peatland water tables, climate, and long-term peatland development are poorly understood. Here we use a combination of high-resolution proxy climate data and a model of long-term peatland development to examine the relationship between rapid hydrological fluctuations in peatlands and climatic forcing. We show that changes in water-table depth can occur independently of climate forcing. Ecohydrological feedbacks inherent in peatland development can lead to a degree of homeostasis that partially disconnects peatland water-table behaviour from external climatic influences. We conclude by suggesting that further work needs to be done before peat-based climate reconstructions can be used to test climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• In a free-air CO2 enrichment study (BangorFACE) Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one, two and three species mixtures (n=4). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years, and aboveground growth characteristics measured. • In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was +29, +22 and +16% for A. glutinosa, F. sylvatica, and B. pendula respectively. When the same species were grown in polyculture, the response to CO2 switched to +10, +7 and 0%, for A. glutinosa, B. pendula, and F. sylvatica respectively. • In ambient atmosphere our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 kg m-2 to 18.9 ± 1.0 kg m-2, whereas in an elevated CO2 atmosphere aboveground woody biomass increased from 15.2 ± 0.6 kg m-2 to 20.2 ± 0.6 kg m-2. The overyielding effect of polyculture was smaller (+7%) in elevated CO2 than in an ambient atmosphere (+18%). • Our results show that the aboveground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Woolaston on the western shores of the middle Severn Estuary c. 7 km upstream of Chepstow intertidal Holocene sediment exposures have been surveyed and the stratigraphic sequence established by coring and limited excavation. There are two main peats each with a submerged forest. An existing dendrochronological sequence for the Upper Submerged Forest has been extended and the preliminary results of pollen analysis from the peat sequence are summarised. A few flint flakes were found but were not stratified in the mid-Holocene sequence. There is evidence for late Mesolithic / early Neolithic burning episodes which may relate to human activity. Evidence is reported for Medieval activity and the extensive modification of drainage in this period is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (QE) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over QE, particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower QE and higher sensible heat flux (QH). There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper. Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase QE and reduce QH. Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce QE by roughly 50% with little change in QH, while the ground heat flux is strongly enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines thermally induced flows (or “snow breezes”) associated with snow cover in the boreal forests of Canada. Observations from a lake less than 4 km across were made as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) winter field campaign. These are interpreted with the aid of idealized three-dimensional mesoscale model simulations representing the forest-lake contrast. Typically, strong forest-lake temperature contrasts develop in the lowest 50 m of the atmosphere during the morning. The resulting pressure gradients induce low-level onshore wind components across the lake. This snow breeze persists into the afternoon provided that large-scale winds remain light. A characteristic snow breeze signature is clearly evident in wind observations averaged over 27 days of data, in agreement with model simulations. The study suggests that snow breezes will regularly develop over the many larger lakes and other unvegetated areas in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis presented in this paper suggests that the larger heating over the boreal forest in the spring and summer, as contrasted with weaker heating over the adjacent tundra, results in a preferred position of the polar front along the northern edge of the boreal forest. This positioning is well documented in the literature (see, for example, Bryson, 1966; Barry and Hare, 1974; Kreps and Barry, 1970). This heating results from the lower albedo of the boreal forest which is not compensated by an increase in transpiration, even with the larger leaf area index of the forest. The warmer temperatures are mixed upward by the deep boundary layer over the forest and mesoscale circulations which result from the patchiness of heating associated with the heterogeneous landscapes of the forest. Thus in contrast to previous assumptions in which the arctic front position in the summer determines the northern limit of the boreal tree line, our study suggests the boreal forest itself significantly influences the preferred position of the front. This conclusion reinforces the findings of Bonan et al. (1992) and Foley et al. (1994) on the important role of boreal forest-tundra interactions with climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’