968 resultados para P-Zn interaction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work is to show how to renormalize the nucleon-nucleon interaction at next-to-next-to-leading order using a. systematic subtractive renormalization approach with multiple subtractions. As an example, we calculate the phase shifts for the partial waves with total angular momentum J = 2. The intermediate driving terms at each recursive step as well as the renormalized T-matrix are also shown. We conclude that our method is reliable for singular potentials such as the two-pion exchange and derivative contact interactions.
Resumo:
We develop a relativistic three-body model for the final state interaction in D(+) -> K(-) pi(+) pi(+) decay based on the ladder approximation of the Bethe-Salpeter equation. The decay amplitude has the standard two-meson resonant transition matrix modulated by a spectator amplitude that carries a fully interacting three-body contribution and a smooth background term from the partonic amplitude. Our calculations are compared with D decay data.
Resumo:
We investigate the spin of the electron in a non-relativistic context by using the Galilean covariant Pauli-Dirac equation. From a non-relativistic Lagrangian density, we find an appropriate Dirac-like Hamiltonian in the momentum representation, which includes the spin operator in the Galilean covariant framework. Within this formalism, we show that the total angular momentum appears as a constant of motion. Additionally, we propose a non-minimal coupling that describes the Galilean interaction between an electron and the electromagnetic field. Thereby, we obtain, in a natural way, the Hamiltonian including all the essential interaction terms for the electron in a general vector field.
Resumo:
We present the actual state of affairs and future perspectives in the study of a quantum system of a collection of positronium (Ps) atoms. The interaction of a Ps atom with other atoms and molecules and specially with another Ps atom is described in some detail as Ps-Ps interaction should play a crucial role in the dynamics of an assembly of Ps atoms. Using a simple model-exchange potential, we could describe the available experimental results of Ps scattering reasonably well. The present scenario of the observation of Ps2 molecule, Ps Bose-Einstein condensate (BEC) and the annihilation laser from a Ps BEC is presented. Possibilities of a Ps BEC formation via laser cooling of Ps atoms and via Ps formation in cavities are considered and difficulties with each procedure discussed (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is shown that the tight-binding approximation of the nonlinear Schrodinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present nonstandard possibilities, among which we mention a quasilinear regime, where the pulse dynamics obeys essentially the linear Schrodinger equation. We analyze the properties of such models both in connection to their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions.
Resumo:
We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Pluriserial Ribeira Magmatic System-590 of the Late Precambrian Ribeira Fold Belt comprises seven groups of high-K rocks of crustal or mantle origin with ages ranging between 620 and 570 Ma. One of these groups is represented by transalkaline suites akin to appinitic lamprophyres. The suites assemble one or more of following lithologies: (+/- quartz) gabbros and monzogabbros, (+/- quartz) diorites and monzodiorites, (+/- quartz) monzonites and syenites in addition to rare granites. All these rocks occur together in the Piracaia pluton, State of São Paulo. The mineralogy of the Piracaia suite comprises variable amounts of plagioclase (An 60-10), alkali-feldspars (orthoclase, microcline, albite), ortho- (Fe-hypersthene) and clinopyroxenes (augite), amphiboles (hornblende and rare late Fe-hastingsite), abundant biotite, quartz, opaques, sphene, allanite and zircon. Several magmatic pulses constructed the pluton. The Piracaia magma bulk trend evolved initially along the silica-undersaturation plane with simultaneous fractionation of accessory, mafic and felsic minerals. These are segregated in feldspar-rich cumulates. In the late stage, the evolutionary trend followed two distinct paths: one along the or-ab thermal barrier with the crystallization of syenites; the second one along the thermal valley in the or-ab-qz subsystem, producing quartz-syenites and granites. The source of the Piracaia magma was a 'vein-plus-wall-rock-system '. Together the pulses reflect increasing and decreasing participation of peridotites and mica pyroxenites, respectively, in the magmatogenic process. The magmatic pulses were stored in magma chambers, several drained by deep faults or fractures, which were successively reactivated and recharged. Each new pulse underwent mixing with earlier residual magma, followed by fractionation. During ascent through the hot and thickened post-collisional crust, the magma pulses underwent minor compositional changes by crustal contamination. The concentration of valuable elements (Cu, Zn, Gd) in the Piracaia pluton occurred during two phases of the magmatic evolution. Cu and Zn were enriched in cumulates and Gd was concentrated in residual quartz-syenitic veins. Due to their homogeneous dark colour and texture, the monzodiorites are exploited both for polished dimension stones and supports for sensitive scientific instruments. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of Fe addition on the microstructural properties and the corrosion resistance of Al-Zn-Mg alloys submitted to different heat treatments (cast, annealed and aged), has been studied in chloride solutions using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), cyclic polarization (CP) and open circuit potential (o.c.p.) measurements. The presence of 0.3% Fe in the alloy limited the growth of the MgZn2 precipitates, both in the annealed and in the quenched specimens. No effect of Cr on the grain size in the presence of Fe was found because of the accumulation of Cr in the Fe-rich particles. Fe in the Al-Zn-Mg alloys also made them more susceptible to pitting. Pitting occurred mainly near the Fe-rich particles both, under o.c.p. conditions in O-2-saturated solutions and during the CP.
Resumo:
The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.