1000 resultados para Ovicidal properties
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
The impact of pig slurry and poultry litter fertilization on soils depends on the conditions of use and the amounts applied. This study evaluated the effect of organic fertilizers after different application periods in different areas on the physical properties and organic carbon contents of a Rhodic Kandiudox, in Concordia, Santa Catarina, in Southern Brazil. The treatments consisted of different land uses and periods of pig and poultry litter fertilization: silage maize (M7 years), silage maize (M20 years), annual ryegrass pasture (P3 years), annual ryegrass pasture (P15 years), perennial pasture (PP20 years), yerba mate tea (Mt20 years), native forest (NF), and native pasture without manure application (P0). The 0-5, 5-10 and 10-20 cm soil layers were sampled and analyzed for total organic carbon, total nitrogen and soil physical properties such as density, porosity, aggregation, degree of flocculation, and penetration resistance. The organic carbon levels in the cultivated areas treated with organic fertilizer were even lower than in native forest soil. The organic fertilizers and studied management systems reduced the flocculation degree of the clay particles, and low macroporosity was observed in some areas. Despite these changes, a good soil physical structure was maintained, e.g., soil density and resistance to penetration were below the critical limits, whereas aggregate stability was high, which is important to reduce water erosion in these areas with rugged terrain in western Santa Catarina, used for pig and poultry farming.
Resumo:
The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.
Resumo:
The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.
Resumo:
Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.
Resumo:
We have studied the effect of heat treatment on the magnetic properties and on the martensitic transition of the Ni50Mn30Al20 alloy. A mixed L21+B2 state is obtained in the as-prepared sample, while no L21 order is retained in the sample quenched from high temperature. For the two heat treatments, the samples order antiferromagnetically, but there is evidence of coexisting ferromagnetic interactions. A martensitic transition occurs below the magnetic one for quenched samples. However, the martensitic transition is inhibited in the as-prepared sample.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.
Resumo:
The application of sewage sludge is a concern because it may affect the quality of organic matter and microbiological and biochemical soil properties. The effects of surface application of sewage sludge to an agricultural soil (at 18 and 36 t ha-1 dry basis) were assessed in one maize (Zea mays L.) growing season. The study evaluated microbial biomass, basal respiration and selected enzymatic activities (catalase, urease, acid and alkaline phosphatase, and β-glucosidase) 230 days after sewage sludge application and infrared spectroscopy was used to assess the quality of dissolved organic matter and humic acids. Sewage sludge applications increased the band intensity assigned to polysaccharides, carboxylic acids, amides and lignin groups in the soil. The organic matter from the sewage sludge had a significant influence on the soil microbial biomass; nevertheless, at the end of the experiment the equilibrium of the soil microbial biomass (defined as microbial metabolic quotient, qCO2) was recovered. Soil urease, acid and alkaline phosphatase activity were strongly influenced by sewage sludge applications.
Resumo:
Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.
Resumo:
Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures), as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day), the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3), the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m) and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m).
Characterization of soil chemical properties of strawberry fields using principal component analysis
Resumo:
One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS) is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA). Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM), soil total nitrogen (N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg), soil pH (pH), cation exchange capacity (CEC) at pH 7.0, soil base (V%) and soil aluminum saturation(m%). No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.
Resumo:
Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.