946 resultados para Outstanding housewives
Resumo:
One of the major challenges for a mission to the Jovian system is the radiation tolerance of the spacecraft (S/C) and the payload. Moreover, being able to achieve science observations with high signal to noise ratios (SNR), while passing through the high flux radiation zones, requires additional ingenuity on the part of the instrument provider. Consequently, the radiation mitigation is closely intertwined with the payload, spacecraft and trajectory design, and requires a systems-level approach. This paper presents a design for the Io Volcano Observer (IVO), a Discovery mission concept that makes multiple close encounters with Io while orbiting Jupiter. The mission aims to answer key outstanding questions about Io, especially the nature of its intense active volcanism and the internal processes that drive it. The payload includes narrow-angle and wide-angle cameras (NAC and WAC), dual fluxgate magnetometers (FGM), a thermal mapper (ThM), dual ion and neutral mass spectrometers (INMS), and dual plasma ion analyzers (PIA). The radiation mitigation is implemented by drawing upon experiences from designs and studies for missions such as the Radiation Belt Storm Probes (RBSP) and Jupiter Europa Orbiter (JEO). At the core of the radiation mitigation is IVO's inclined and highly elliptical orbit, which leads to rapid passes through the most intense radiation near Io, minimizing the total ionizing dose (177 krads behind 100 mils of Aluminum with radiation design margin (RDM) of 2 after 7 encounters). The payload and the spacecraft are designed specifically to accommodate the fast flyby velocities (e.g. the spacecraft is radioisotope powered, remaining small and agile without any flexible appendages). The science instruments, which collect the majority of the high-priority data when close to Io and thus near the peak flux, also have to mitigate transient noise in their detectors. The cameras use a combination of shielding and CMOS detectors with extremely fast readout to mi- imize noise. INMS microchannel plate detectors and PIA channel electron multipliers require additional shielding. The FGM is not sensitive to noise induced by energetic particles and the ThM microbolometer detector is nearly insensitive. Detailed SNR calculations are presented. To facilitate targeting agility, all of the spacecraft components are shielded separately since this approach is more mass efficient than using a radiation vault. IVO uses proven radiation-hardened parts (rated at 100 krad behind equivalent shielding of 280 mils of Aluminum with RDM of 2) and is expected to have ample mass margin to increase shielding if needed.
Resumo:
INTRODUCTION: Cadaver dogs are known as valuable forensic tools in crime scene investigations. Scientific research attempting to verify their value is largely lacking, specifically for scents associated with the early postmortem interval. The aim of our investigation was the comparative evaluation of the reliability, accuracy, and specificity of three cadaver dogs belonging to the Hamburg State Police in the detection of scents during the early postmortem interval. MATERIAL AND METHODS: Carpet squares were used as an odor transporting media after they had been contaminated with the scent of two recently deceased bodies (PMI<3h). The contamination occurred for 2 min as well as 10 min without any direct contact between the carpet and the corpse. Comparative searches by the dogs were performed over a time period of 65 days (10 min contamination) and 35 days (2 min contamination). RESULTS: The results of this study indicate that the well-trained cadaver dog is an outstanding tool for crime scene investigation displaying excellent sensitivity (75-100), specificity (91-100), and having a positive predictive value (90-100), negative predictive value (90-100) as well as accuracy (92-100).
Resumo:
Radiolabeled sst 2 and sst 3 antagonists are better candidates for tumor targeting than agonists with comparable binding characteristics (Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Erchegyi, J.; Rivier, J.; Mäcke, H. R.; Reubi, J. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16436-16441.). Because most of the neuroendocrine tumors express sst 2, we used the known antagonists acetyl- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 1) (Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1996, 50, 709-715. Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1997, 51, 170; Erratum.) and H-Cpa (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]-2Nal (15)-NH 2 ( 7) (Hocart, S. J.; Jain, R.; Murphy, W. A.; Taylor, J. E.; Coy, D. H. J. Med. Chem. 1999, 42, 1863-1871.) as leads for analogues with increased sst 2 binding affinity and selectivity. Among the 32 analogues reported here, DOTA- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)- dTyr (15)-NH 2 ( 3) and DOTA-Cpa (2)- c[ dCys (3)-Aph (7)(Hor)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 31) had the highest sst 2 binding affinity and selectivity. All of the analogues tested kept their sst 2 antagonistic properties (i.e., did not affect calcium release in vitro and competitively antagonized the agonistic effect of [Tyr (3)]octreotide). Moreover, in an immunofluorescence-based internalization assay, the new analogues prevented sst 2 internalization induced by the sst 2 agonist [Tyr (3)]octreotide without being active by themselves. In conclusion, several analogues (in particular 3, 31, and 32) have outstanding sst 2 binding and functional antagonistic properties and, because of their DOTA moiety, are excellent candidates for in vivo targeting of sst 2-expressing cancers.
Resumo:
Organic-inorganic hybrid nanocomposites are widely studied and applied in broad areas because of their ability to combine the flexibility, low density of the organic materials with the hardness, strength, thermal stability, good optical and electronic properties of the inorganic materials. Polydimethylsiloxane (PDMS) due to its excellent elasticity, transparency, and biocompatibility has been extensively employed as the organic host matrix for nanocomposites. For the inorganic component, titanium dioxide and barium titanate are broadly explored as they possess outstanding physical, optical and electronic properties. In our experiment, PDMS-TiO2 and PDMS-BaTiO3 hybrid nanocomposites were fabricated based on in-situ sol-gel technique. By changing the amount of metal precursors, transparent and homogeneous PDMS-TiO2 and PDMS-BaTiO3 hybrid films with various compositions were obtained. Two structural models of these two types of hybrids were stated and verified by the results of characterization. The structures of the hybrid films were examined by a conjunction of FTIR and FTRaman. The morphologies of the cross-sectional areas of the films were characterized by FESEM. An Ellipsometer and an automatic capacitance meter were utilized to evaluate the refractive index and dielectric constant of these composites respectively. A simultaneous DSC/TGA instrument was applied to measure the thermal properties. For PDMS-TiO2 hybrids, the higher the ratio of titanium precursor added, the higher the refractive index and the dielectric constant of the composites are. The highest values achieved of refractive index and dielectric constant were 1.74 and 15.5 respectively for sample PDMS-TiO2 (1-6). However, when the ratio of titanium precursor to PDMS was as high as 20 to 1, phase separation occurred as evidenced by SEM images, refractive index and dielectric constant decreased. For PDMS-BaTiO3 hybrids, with the increase of barium and titanium precursors in the system, the refractive index and dielectric constant of the composites increased. The highest value was attained in sample PDMS-BaTiO3 (1-6) with a refractive index of 1.6 and a dielectric constant of 12.2. However, phase separation appeared in SEM images for sample PDMS-BaTiO3 (1-8), the refractive index and dielectric constant reduced to lower values. Different compositions of PDMS-TiO2 and PDMS-BaTiO3 hybrid films were annealed at 60 °C and 100 °C, the influences on the refractive index, dielectric constant, and thermal properties were investigated.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.
Resumo:
Beyond the challenge of crafting a new state Constitution that empowered the people and modernized and opened up state and local government in Montana, the Constitutional Convention delegates, as they signed the final document, looked forward to the arduous task of getting it ratified by the electorate in a short ten week period between the end of the convention on March 24 and the ratification election of June 6, 1972. While all 100 delegates signed the draft Constitution, not all supported its adoption. But the planning about how to get it adopted went back to the actions of the Convention itself, which carefully crafted a ballot that kept “hot political issues” from potentially killing the entire document at the polls. As a result, three side issues were presented to the electorate on the ballot. People could vote for or against those side issues and still vote to ratify the entire document. Thus, the questions of legalizing gambling, having a unicameral legislature and retaining the death penalty were placed separately on the ballot (gambling passed, as did the retention of the death penalty, but the concept of a one-house legislature was defeated). Once the ballot structure was set, delegates who supported the new Constitution organized a grassroots, locally focused effort to secure ratification – thought hampered by a MT Supreme Court decision on April 28 that they could not expend $45,000 in public monies that they had set aside for voter education. They cobbled together about $10,000 of private money and did battle with the established political forces, led by the MT Farm Bureau, MT Stockgrowers’ Assn. and MT Contractors Assn., on the question of passage. Narrow passage of the main document led to an issue over certification and a Montana Supreme Court case challenging the ratification vote. After a 3-2 State Supreme Court victory, supporters of the Constitution then had to defend the election results again before the federal courts, also a successful effort. Montana finally had a new progressive State Constitution that empowered the people, but the path to it was not clear and simple and the win was razor thin. The story of that razor thin win is discussed in this chapter by the two youngest delegates to the 1972 Constitutional Convention, Mae Nan Ellingson of Missoula and Mick McKeon, then of Anaconda. Both recognized “Super Lawyers in their later professional practices were also significant players in the Constitutional Convention itself and actively participated in its campaign for ratification. As such, their recollections of the effort provide an insider’s perspective of the struggle to change Montana for the better through the creation and adoption of a new progressive state Constitution “In the Crucible of Change.” Mae Nan (Robinson) Ellingson was born Mae Nan Windham in Mineral Wells, TX and graduated from Mineral Wells High School in 1965 and Weatherford College in Weatherford, TX in 1967. Mae Nan was the youngest delegate at the 1972 Convention from Missoula. She moved to Missoula in 1967 and received her BA in Political Science with Honors from the University of MT in 1970. She was a young widow known by her late husband’s surname of Robinson while attending UM graduate school under the tutelage of noted Professor Ellis Waldron when he persuaded her to run for the Constitutional Convention. Coming in a surprising second in the delegate competition in Missoula County she was named one of the Convention’s “Ten Outstanding Constitutional Convention Delegates,” an impressive feat at such a young age. She was 24 at the time, the youngest person to serve at the ConCon, and one of 19 women out of 100 delegates. In the decade before the Convention, there were never more than three women Legislators in any session, usually one or two. She was a member of the American Association of University Women, a Pi Sigma Alpha political science honorary, and a Phi Alpha Theta historical honorary. At the Convention, she led proposals for the state's bill of rights, particularly related to equal rights for women. For years, Ellingson kept a copy of the preamble to the Constitution hanging in her office; while all the delegates had a chance to vote on the wording, she and delegate Bob Campbell are credited with the language in the preamble. During the convention, she had an opportunity that opened the door to her later career as an attorney. A convention delegate suggested to her that she should go to law school. Several offered to help, but at the time she couldn't go to school. Her mom had died in Texas, and she ended up with a younger brother and sister to raise in Missoula. She got a job teaching, but about a year later, intrigued with the idea of pursuing the law as a career, she called the man back to ask about the offer. Eventually another delegate, Dave Drum of Billings, sponsored her tuition at the UM School of Law. After receiving her JD with Honors (including the Law Review and Moot Court) from the UM Law School Ellingson worked for the Missoula city attorney's office for six years (1977-83), and she took on landmark projects. During her tenure, Missoula became the first city to issue open space bonds, a project that introduced her to Dorsey & Whitney. The city secured its first easement on Mount Sentinel, and it created the trail along the riverfront with a mix of playing fields and natural vegetation. She also helped develop a sign ordinance for the city of Missoula. She ended up working as bond counsel for Dorsey & Whitney, and she opened up the firm's full-fledged Missoula office after commuting a couple of years to its Great Falls office. She was a partner at Dorsey Whitney, working there from 1983 until her retirement in 2012. The area of law she practiced there is a narrow specialty - it requires knowledge of constitutional law, state and local government law, and a slice of federal tax law - but for Ellingson it meant working on great public projects – schools, sewer systems, libraries, swimming pools, ire trucks. At the state level, she helped form the Montana Municipal Insurance Authority, a pooled insurance group for cities. She's shaped MT’s tax increment law, and she was a fixture in the MT Legislature when they were debating equal rights. As a bond lawyer, though, Ellingson considers her most important work for the state to be setting up the Intercap Program that allowed local governments to borrow money from the state at a low interest rate. She has been a frequent speaker at the League of Cities and Towns, the Montana Association of Counties, and the Rural Water Users Association workshops on topics related to municipal finance, as well as workshops sponsored by the DNRC, the Water and Sewer Agencies Coordination Team, and the Montana State University Local Government Center. In 2002, she received an outstanding service award from the Montana Rural Water Users Association. In addition to being considered an expert on Montana state and constitutional law, local government law and local government finance, she is a frequent teacher at the National Association of Bond Lawyers (NABL) Fundamentals of Municipal Bond Law Seminar and the NABL Bond Attorney’s Workshop. For over 30 years Mae Nan has participated in the drafting of legislation in Montana for state and local finance matters. She has served on the Board of Directors of NABL, as Chairman of its Education Committee, was elected as an initial fellow in 1995 to the American College of Bond Counsel, and was recognized as a Super Lawyer in the Rocky Mountain West. Mae Nan was admitted to practice before the MT and US Supreme Courts, was named one of “America’s Leading Business Lawyers” by Chambers USA (Rank 1), a Mountain States Super Lawyer in 2007 and is listed in Best Lawyers in America; she is a member and former Board Member of NABL, a Fellow of the American College of Bond Counsel and a member of the Board of Visitors of the UM Law School. Mae Nan is also a philanthropist who serves on boards and applies her intelligence to many organizations, such as the Missoula Art Museum. [Much of this biography was drawn from a retirement story in the Missoulian and the Dorsey Whitney web site.] Mick McKeon, born in Anaconda in 1946, is a 4th generation Montanan whose family roots in this state go back to the 1870’s. In 1968 he graduated from Notre Dame with a BA in Communications and received a Juris Doctorate degree from the University of Montana Law School in 1971. Right after graduating from law school, Mick was persuaded by his father, longtime State Senator Luke McKeon, and his uncle, Phillips County Attorney Willis McKeon, to run for delegate to Montana’s Constitutional Convention and was elected to represent Deer Lodge, Philipsburg, Powell, and part of Missoula Counties. Along with a coalition of delegates from Butte and Anaconda, he fought through the new Constitution to eliminate the legal strangle hold, often called “the copper collar,” that corporate interests -- the Anaconda Company and its business & political allies -- had over state government for nearly 100 years. The New York Times called Montana’s Constitutional Convention a “prairie revolution.” After helping secure the ratification of the new Constitution, Mick began his practice of law in Anaconda where he engaged in general practice for nearly 20 years. Moving to Butte in 1991, Mick focused has practice in personal injury law, representing victims of negligence and corporate wrongdoing in both Montana district courts and federal court. As such, he participated in some of the largest cases in the history of the state. In 1992 he and his then law partner Rick Anderson obtained a federal court verdict of $11.5 million -- the largest verdict in MT for many years. Mick’s efforts on behalf of injured victims have been recognized by many legal organizations and societies. Recently, Mick was invited to become a member of the International Academy of Trial Lawyers - 600 of the top lawyers in the world. Rated as an American Super Lawyer, he has continuously been named one of the Best Lawyers in America, and an International Assn. of Trial Lawyers top 100 Trial Lawyer. In 2005, he was placed as one of Montana’s top 4 Plaintiff’s lawyers by Law Dragon. Mick is certified as a civil trial specialist by the National Board of Trial Advocacy and has the highest rating possible from Martindale-Hubble. Mick was awarded the Montana Trial Lawyers Public Service Award and provided pro bono assistance to needy clients for his entire career. Mick’s law practice, which he now shares with his son Michael, is limited to representing individuals who have been injured in accidents, concentrating on cases against insurance companies, corporations, medical providers and hospitals. Mick resides in Butte with his wife Carol, a Butte native. Mick, Carol, Michael and another son, Matthew, who graduated from Dartmouth College and was recently admitted to the Montana bar, enjoy as much of their time together in Butte and at their place on Flathead Lake.
Resumo:
Professor Edna Chamberlain was an outstanding leader in Australian social work. She contributed extensively to social work education at the University of Queensland, the social work profession through her leadership of the Australian Association of Social Workers and to the community through advocacy for progressive social policies. Her life experiences were influential is shaping her career and her particular teaching and research interests. Early in her life, Chamberlain was exposed to individual deprivation as a result of the Great Depression. This provided the incentive for a career in social work. She worked as a social work practitioner for some years and entered the academic world until after the death of her husband. In the university and profession, she was confronted by conflict between traditionalists and those wanting immediate reform. In managing these tensions, she tried to find the common ground but these tensions also moderated and changed her views about the purpose and practice of social work. Her rich practice and later research and teaching background provided a strong basis for her professional leadership, research activities and curriculum initiatives. Whilst social casework methods were influential early in her career she sought in later years to integrate the private pain of individuals with social policy and community planning by focusing on the purpose of social work – demonstrating her commitment to the disadvantaged in the context of social justice.
Resumo:
In this new column, which from now on shall appear at regular intervals, the editors of JIPITEC would like to present to their readers monographs that in their mind are either outstanding or are worth being mentioned and recommended to the interested reader. Each individual editor is responsible for his or her own choice and each text reflects personal interests and preferences rather than an editorial policy.
Resumo:
The present study reports for the first time the optimization of the infrared (1523 nm) to near-infrared (980 nm) upconversion quantum yield (UC-QY) of hexagonal trivalent erbium doped sodium yttrium fluoride (β-NaYF4:Er3+) in a perfluorocyclobutane (PFCB) host matrix under monochromatic excitation. Maximum internal and external UC-QYs of 8.4% ± 0.8% and 6.5% ± 0.7%, respectively, have been achieved for 1523 nm excitation of 970 ± 43 Wm−2 for an optimum Er3+ concentration of 25 mol% and a phosphor concentration of 84.9 w/w% in the matrix. These results correspond to normalized internal and external efficiencies of 0.86 ± 0.12 cm2 W−1 and 0.67 ± 0.10 cm2 W−1, respectively. These are the highest values ever reported for β-NaYF4:Er3+ under monochromatic excitation. The special characteristics of both the UC phosphor β-NaYF4:Er3+ and the PFCB matrix give rise to this outstanding property. Detailed power and time dependent luminescence measurements reveal energy transfer upconversion as the dominant UC mechanism.
Resumo:
In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward–rightward) motion. Gymnasts showed lower thresholds for the linear leftward–rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14–20 years) than for the younger (7–13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.
Resumo:
Ancient Lake Ohrid is probably of early Pleistocene or Pliocene origin and amongst the few lakes in the world harbouring an outstanding degree of endemic biodiversity. Although there is a long history of evolutionary research in Lake Ohrid, particularly on molluscs, a mollusc fossil record has been missing up to date. For the first time, gastropod and bivalve fossils are reported from the basal, calcareous part of a 2.6 m long sediment succession (core Co1200) from the north-eastern part of Lake Ohrid. Electron spin resonance (ESR) dating of mollusc shells from the same stratigraphic level yielded an age of 130 ± 28 ka. Lithofacies III sediments, i.e. a stratigraphic subdivision comprising the basal succession of core Co1200 between 181.5–263 cm, appeared solid, greyish-white, and consisted almost entirely of silt-sized endogenic calcite (CaCO3>70%) and intact and broken mollusc shells. Here we compare the faunal composition of the thanatocoenosis with recent mollusc associations in Lake Ohrid. A total of 13 mollusc species (9 gastropod and 4 bivalve species) could be identified within Lithofacies III sediments. The value of sediment core fossils for reconstructing palaeoenvironmental settings was evaluated and the agreement between sediment and palaeontological proxies was tested. The study also aims at investigating major faunal changes since the Last Interglacial and searching for signs of extinction events. The combined findings of the ecological study and the sediment characteristics suggest deposition in a shallow water environment during the Last Interglacial. The fossil fauna exclusively included species also found in the present fauna, i.e. no extinction events are evident for this site since the Last Interglacial. The thanatocoenosis showed the highest similarity with recent Intermediate Layer (5–25 m water depth) mollusc assemblages. The demonstrated existence of a mollusc fossil record in Lake Ohrid sediment cores also has great significance for future deep drilling projects. It can be hoped that a more far reaching mollusc fossil record will then be obtained, enabling insight into the early evolutionary history of Lake Ohrid.
Resumo:
Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.
Resumo:
Welcome from Dean Patricia Starck The Face of Health Care Leading Technology School of Nursing Collaborates to Initiate Texas Medical Center’s First Digital Repository Nursing Research, A Growing Field Nursing in the Wake of the Storm Profile: Huaping Liu, RN, PhD, Dean and Associate Professor, School of Nursing at Peking Union Medical College Newsbrief: Planning for the Future with a New Doctor of Nursing Practice Program in Fall 2006 Newsbrief: Fast Track Nursing Program Gives Students a Speedy Start Profile: Susan Bankston, RN, BSN, Psychiatric Nursing, Currently enrolled in the MSN to DSN track Newsbrief: University of Texas Health Services Reports Outstanding Achievements in FY’05 Student Grants Newsbrief: New Degree Program Develops Leadership and Business Skills for Today’s Nurses Profile: Pamela Klauer Triolo, PhD, RN, FAAN Clinical Professor of Nursing Director, Nursing Leadership and Administration in Health Systems Newsbrief: Successful Luncheon Completes $1 Million Endowment UT School of Nursing Building Recognized as Blending Form and Function Faculty Scholarship Endowed Faculty Positions