896 resultados para Oscillator strength
Resumo:
We address the estimation of purity for a quantum oscillator initially prepared in a displaced thermal state and probed by a suitably prepared qubit interacting with the oscillator via Jaynes-Cummings Hamiltonian without the rotating-wave approximation. We evaluate the quantum Fisher information (QFI) and show that optimal estimation of purity can be achieved by measuring the population of the qubit after a properly chosen interaction time. We also address the estimation of purity at fixed total energy and show that the corresponding precision is independent of the presence of a coherent amplitude.
Resumo:
We use the theory of quantum estimation in two different qubit-boson coupling models to demonstrate that the temperature of a quantum harmonic oscillator can be estimated with high precision by quantum-limited measurements on the qubit. The two models that we address embody situations of current physical interest due to their connection with ongoing experimental efforts on the control of mesoscopic dynamics. We show that population measurements performed over the qubit probe are near optimal for a broad range of temperatures of the harmonic oscillator.
Resumo:
This paper presents an in-depth study on the effect that composition and properties of recycled coarse aggregates from previous concrete structures, together with water/cement ratio (w/c) and a replacement ratio of coarse aggregate, have on compressive strength, its evolution through time, and its variability. A rigorous approach through statistical inference based on multiple linear regression has identified the key factors. A predictive equation is given for compressive strength when recycled coarse aggregates are used. The w/c and replacement ratio are the capital factors affecting concrete compressive strength. Their effect is significantly modified by the properties and composition of the recycled aggregates used. An equation that accurately predicts concrete compressive strength in terms of these parameters is presented. Particular attention has been paid to the complex effect that old concrete and adhered mortar have on concrete compressive strength and its mid-term evolution. It has been confirmed that the presence of contaminants tends to increase variability of compressive strength values.
Resumo:
Finite Element simulations and mechanical tests are undertaken to assess the impact of weld joint location on stiffened panel static strength. An upper wing cover panel, with a manufacturing process of welding multiple near-net-shape multi-stiffener extrusions with a final net-shape machining phase is investigated. The 7000 series aluminium alloy extrusions and skin bay longitudinal friction stir butt welds are examined. Geometric imperfections exhibit the greatest influence on panel collapse, thus for static strength design the selection of weld joint location should minimise imperfection generation. Moreover the analysis demonstrates limited impact on panel collapse strength when an optimised welding process is employed. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth.
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength.
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.
Resumo:
Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
We consider a system composed of a qubit interacting with a quartic (undriven) nonlinear oscillator (NLO) through a conditional displacement Hamiltonian. We show that even a modest nonlinearity can enhance and stabilize the quantum entanglement dynamically generated between the qubit and the NLO. In contrast to the linear case, in which the entanglement is known to oscillate periodically between zero and its maximal value, the nonlinearity suppresses the dynamical decay of the entanglement once it is established. While the entanglement generation is due to the conditional displacements, as noted in several works before, the suppression of its decay is related to the presence of squeezing and other complex processes induced by two- and four-phonon interactions. Finally, we solve the respective Markovian master equation, showing that the previous features are preserved also when the system is open.
Resumo:
Mechanical swivel seat adaptations are a key aftermarket disability modification to any small-to medium-sized passenger vehicle. However, the crashworthiness of these devices is currently unregulated and the existing 20g dynamic sled testing approach is prohibitively expensive for prototype assessment purposes. In this paper, an alternative quasi-static test method for swivel seat assessment is presented, and two different approaches (free-body diagram and multibody modelling) validated through published experimental data are developed to determine the appropriate loading conditions to apply in the quasi-static testing.Results show the two theoretical approaches can give similar results for estimating the quasi-static loading conditions, and this depends on the seatbelt configuration. Application of the approach to quasi-static testing of both conventional seats and those with integrated seat belts showed the approach to be successful and easy to apply. It is proposed that this method be used by swivel seat designers to assess new prototypes prior to final validation via the traditional 20g sled test.
Resumo:
Objectives: To examine the association between fruit and vegetable (FV) consumption and muscle strength and power in an adolescent population. Methods: We conducted a cross-sectional analysis among 1019 boys and 998 girls, aged 12 and 15 years, who participated in The Young Hearts Project. FV consumption (excluding potatoes) was assessed by 7-d diet history. Grip strength and jump power was assessed with a dynamometer and Jump-MD meter, respectively. Associations between FV consumption and strength and power were assessed by regression modelling. Results: Boys and girls with the highest FV intakes (>237.71 g/d and >267.57 g/d, respectively, based on the highest tertile) had significantly higher jump power than those with the lowest intakes (<135.09 g/d and <147.43 g/d, respectively), after adjustment for confounding factors. Although girls with the highest FV intakes had higher grip strength than those with the lowest intakes, no significant independent associations were evident between FV intake and grip strength in boys or girls. Similar findings were observed when FV were analysed separately.Conclusions: Higher FV consumption in this group of adolescents was positively associated with muscle power. There was no independent association between higher FV consumption and muscle strength. Intervention studies are required to determine whether muscle strength and power can be improved through increased FV consumption.
Resumo:
Social identity in Northern Ireland is multifaceted, with historical, religious, political, social, economic, and psychological underpinnings. Understanding the factors that influence the strength of identity with the Protestant or Catholic community, the two predominate social groups in Northern Ireland, has implications for individual well-being as well as for the continuation of tension and violence in this setting of protracted intergroup conflict. This study examined predictors of the strength of in-group identity in 692 women (mean age 37 years) in post-accord Northern Ireland. For Catholics, strength of in-group identity was positively linked to past negative impact of sectarian conflict and more frequent current church attendance, whereas for Protestants, strength of in-group identity was related to greater status satisfaction regarding access to jobs, standard of living, and political power compared with Catholics; that is, those who felt less relative deprivation. The discussion considers the differences in the factors underlying stronger identity for Protestants and Catholics in this context.