976 resultados para Orbital blocking
Resumo:
The inflammatory prostaglandin E2 (PGE2) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE2-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE2 EP4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE2-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.
Resumo:
Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug reaction in which keratinocytes die and large sections of epidermis separate from the dermis. Keratinocytes normally express the death receptor Fas (CD95); those from TEN patients were found to express lytically active Fas ligand (FasL). Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro. In a pilot study, 10 consecutive individuals with clinically and histologically confirmed TEN were treated with IVIG; disease progression was rapidly reversed and the outcome was favorable in all cases. Thus, Fas-FasL interactions are directly involved in the epidermal necrolysis of TEN, and IVIG may be an effective treatment.
Resumo:
The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.
Resumo:
A variety of acute neurologic disorders present with visual signs and symptoms. In this review the authors focus on those disorders in which the clinical outcome is dependent on timely and accurate diagnosis. The first section deals with acute visual loss, specifically optic neuritis, ischemic optic neuropathy (ION), retinal artery occlusion, and homonymous hemianopia. The authors include a discussion of those clinical features that are helpful in distinguishing between inflammatory and ischemic optic nerve disease and between arteritic and nonarteritic ION. The second section concerns disc edema with an emphasis on the prevention of visual loss in patients with increased intracranial pressure. The third section deals with abnormal ocular motility, and includes orbital inflammatory disease, carotid-cavernous fistulas, painful ophthalmoplegia, conjugate gaze palsies, and neuromuscular junction disorders. The final section concerns pupillary abnormalities, with a particular emphasis on the dilated pupil and on carotid artery dissection. Throughout there are specific guidelines for the management of these disorders, and areas are highlighted in which there is ongoing controversy.
Resumo:
The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences both in vitro and in vivo suggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.
Resumo:
Tumor angiogenesis is an essential step in tumor progression and metastasis formation. Suppression of tumor angiogenesis results in the inhibition of tumor growth. Recent evidence indicates that vascular integrins, in particular alpha V beta 3, are important regulators of angiogenesis, including tumor angiogenesis. Integrin alpha V beta 3 antagonists, such as blocking antibodies or peptides, suppress tumor angiogenesis and tumor progression in many preclinical tumor models. The potential therapeutic efficacy of extracellular integrin antagonists in human cancer is currently being tested in clinical trials. Selective disruption of the tumor vasculature by high doses of tumor necrosis factor (TNF) and interferon gamma (IFN-gamma), and the antiangiogenic activity of nonsteroidal anti-inflammatory drugs are associated with the suppression of integrin alpha V beta 3 function and signaling in endothelial cells. Furthermore, expression of isolated integrin cytoplasmic domains disrupts integrin-dependent adhesion, resulting in endothelial cell detachment and apoptosis. These results confirm the critical role of vascular integrins in promoting endothelial cell survival and angiogenesis and suggest that intracellular targeting of integrin function and signaling may be an alternative strategy to extracellular integrin antagonists for the therapeutic inhibition of tumor angiogenesis.
Resumo:
Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.
Resumo:
PURPOSE: To elucidate the aetiology of congenital Brown syndrome. METHODS: Four consecutive patients diagnosed with unilateral congenital Brown syndrome had a comprehensive standardized ocular motility examination. Any compensatory head posture was measured. Brain magnetic resonance imaging (MRI) with regard for the IV cranial nerve (CN) was performed in all patients. Orbital MRI was performed in 2/4 patients, with images acquired in eight directions of gaze and superior oblique (SO) muscle areas compared. RESULTS: CN IV could not be identified bilaterally in two patients, but was absent only on the side of the Brown syndrome in the two other patients. On the normal side, orbital MRI revealed a smaller SO muscle area in upgaze than in downgaze, demonstrating normal actions of this muscle. On the side of the Brown syndrome, the SO area remained the same in upgaze and in downgaze and approximately symmetric to the area of SO in downgaze on the normal side. CONCLUSIONS: These cases add further anatomical support to the theory of paradoxical innervation in congenital Brown syndrome. CN IV was absent in two patients on the side of the Brown syndrome, but without muscle hypoplasia. SO muscle size did not vary in up- and downgaze, which we interpreted as a sign of constant innervation through branches of CN III.
Resumo:
The purpose of this study was to compare in the individual hypertensive patient the blood pressure lowering effect of a beta-blocking agent i.e. betaxolol with that of a calcium entry blocker, i.e. verapamil. The antihypertensive efficacy of the drugs was evaluated both at the physician's office and by monitoring ambulatory daytime blood pressure using a portable blood pressure recorder (Remler M2000). Seventeen patients with uncomplicated essential hypertension (aged 35-67 years) were treated for two consecutive 6-week periods with either betaxolol, 20 mg/day or a slow-release formulation of verapamil, 240-480 mg/day. The sequence of treatment phases was randomly allocated and a 2-week wash-out period preceded each treatment. Both betaxolol and verapamil had a significant blood pressure lowering effect when assessed at the physician's office. However, ambulatory recorded blood pressures were significantly reduced only with betaxolol. In the presence of a physician, the best responders to betaxolol tended to be also the best responders to verapamil, whereas there was no relationship between the fall in ambulatory recorded blood pressure observed during betaxolol and the corresponding fall during verapamil administration. The blood pressure response to both betaxolol and verapamil was not related to age.
Resumo:
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death.
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
We describe a simple method to automate the geometric optimization of molecular orbital calculations of supermolecules on potential surfaces that are corrected for basis set superposition error using the counterpoise (CP) method. This method is applied to the H-bonding complexes HF/HCN, HF/H2O, and HCCH/H2O using the 6-31G(d,p) and D95 + + (d,p) basis sets at both the Hartree-Fock and second-order Møller-Plesset levels. We report the interaction energies, geometries, and vibrational frequencies of these complexes on the CP-optimized surfaces; and compare them with similar values calculated using traditional methods, including the (more traditional) single point CP correction. Upon optimization on the CP-corrected surface, the interaction energies become more negative (before vibrational corrections) and the H-bonding stretching vibrations decrease in all cases. The extent of the effects vary from extremely small to quite large depending on the complex and the calculational method. The relative magnitudes of the vibrational corrections cannot be predicted from the H-bond stretching frequencies alone
Resumo:
Focal dermal hypoplasia (FDH; Goltz-Gorlin syndrome; OMIM 305600) is a disorder that features involvement of the skin, skeletal system, and eyes. It is caused by loss-of-function mutations in the PORCN gene. We report a young girl with FDH, microphthalmos associated with colobomatous orbital cyst, dural ectasia and cystic malformation of the spinal cord, and a de novo variant in PORCN. This association has not been previously reported, and based on these observations the phenotypic spectrum of FDH might be broader than previously appreciated. It would be prudent to alter the suggested surveillance for this rare disorder. © 2013 Wiley Periodicals, Inc.