989 resultados para Orbit
Resumo:
Introduction: Impacted knife injuries in the maxillofacial region are rare and infrequently reported. In cases of injury involving orbit or eye, these reports are even rarer. Discussion: Damage to the orbital contents may result in a rupture of the globe, extraocular muscle injury, lacrimal gland damage, and others. Orbital foreign bodies are not only difficult to detect, and clinical features vary according to its size, characteristics, shape, penetrating method, and site. In this report, a case of abducens nerve palsy after orbitoethmoidal knife injury is presented. © 2010 Springer-Verlag.
Resumo:
The first Brazilian mission to an asteroid is being planned. The target is the asteroid 2001 SN263, which has a NEA orbit of class AMOR. Spectral analysis indicated that this is a C-type asteroid. This type of asteroids are dark and difficult to be studied from Earth. They hold clues of the initial stages of planetary formation and also the origin of water and life on Earth. In fact, radar data showed that 2001 SN263 is composed of three bodies with diameters of about 2.8 km, 1.1 km and 0.4 km. Therefore, the spacecraft will have the opportunity to explore three bodies on the same trip. The mission is scheduled to be launched in 2015, reaching the asteroid in 2018. It will be used a small spacecraft (150 kg) with 30 kg for the payload. The set of scientific instruments being considered to explore the target of this mission include an Imaging Camera, a Laser Rangefinder, an Infrared Spectrometer, a Synthetic Aperture Radar and a Mass Spectrometer. The main measurements to be made include the bulk properties (size, shape, mass, density, dynamics, spin state), the internal properties (structure, gravity field) and surface properties (mineralogy, morphology, elemental composition). The mission also opens an opportunity for some relevant experiments, not directly related to the target. Two such experiments will take benefit from being on board of the spacecraft along the journey to the asteroid system, which will take about three years. The first is an astrobiology experiment. The main goal of this experiment is to determine the viability of the microorganisms survival in extraterrestrial environments simulated in laboratory (chemical atmosphere, temperature, desiccation, vacuum, microgravity and radiation). The second experiment is a plasma package. The main objectives of this experiment are to study the structure and electrodynamics of plasma along the trajectory, the plasma instability processes and the density and temperature of plasma of solar wind origin along the trajectory and near the asteroids. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission and details of the payload that will be used and the scientific expectations. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
2001 SN263 is a triple system asteroid. Although it was discovery in 2001, in 2008 astronomical observation carried out by Arecibo observatory revealed that it is actually a system with three bodies orbiting each other. The main central body is an irregular object with a diameter about 2.8 km, while the other two are small objects with less than 1 km across. This system presents an orbital eccentricity of 0.47, with perihelion of 1.04 and aphelion of 1.99, which means that it can be considered as a Near Earth Object. This interesting system was chosen as the target for the Aster mission - first Brazilian space exploration undertaking. A small spacecraft with 150 kg of total mass, 30 kg of payload with 110 W available for the instruments, is scheduled to be launched in 2015, and in 2018 it will approach and will be put in orbit of the triple system. This spacecraft will use electric propulsion and in its payload it will carry image camera, laser rangefinder, infrared spectrometer, mass spectrometer, and experiments to be performed in its way to the asteroid. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission, including the transfer trajectories to be used, and details of buss and payload subsystems that are being developed and will be used. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.
Resumo:
Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. In this work, we introduce a new low-cost orbital transfer strategy that opportunistically combine chaotic and swing-by transfers to get a very efficient strategy that can be used for servicing mission on astronomical mission placed on Lagrangian points L4 or L5. This strategy is not only efficient with respect to thrust requirement, but also its time transfer is comparable to others known transfer techniques based on time optimization. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
Craniofacial osseointegrated implants enabled producing implant-retained facial prosthesis, namely the orbital prosthesis. Aim: To evaluate the length and width of the bone structure of the peri-orbital region and to present the method validation. Methods: Computed tomography scans of 30 dry human skulls were obtained in order to register linear length and width measurements of the periorbital region. Two examiners made the measurements twice with intervals of at least 7 days between them. Data were analyzed by descriptive statistics and the paired Student's t-test was used as inferential technique (SAS, α =0.05). Results: In most cases, the intra- and inter-examiner variations were not significant (p>0.05). Therefore, the method proposed was considered as precise and valid for the measurement of the peri-orbital region. The measured points correspond to the hours of a clock. The major lengths were observed at 1 h (18.32 mm) for the left peri-orbital bone and at 11h (19.28 mm) for the right peri-orbital bone, followed by the points situated at 2h (13.05 mm) and 12h (11.37 mm) for the left side and at 10 h (12.34 mm) and 12 h (11.56 mm) for the right side. It was verified that the three points with lowest values followed the same anatomical sequence in the supraorbital rim for the right and left orbits, showing compatibility with the insertion of the intraoral osseointegrated implants. The medial wall of both orbits did not present sufficient length to allow the insertion of intraoral or craniofacial implants. Conclusions: The largest width points were observed in the supraorbital rim and in the infralateral region of both orbits and those of smallest width were found in the supralateral region of both orbits.
Resumo:
Purpose: Bioactive glass and bioactive glass-ceramic cone implants were placed in the rabbit eviscerated socket to assess their biocompatibility. Methods: Fifty-one Norfolk albino rabbits underwent evisceration of the right eye followed by implantation of cones made from Bioglass® 45S5 (control group) and two types of bioactive glass-ceramic (Biosilicate®), a single- and a two-phase bioactive glass-ceramic implants into the scleral cavity. Postoperative reactions, animal behavior and socket conditions were monitored daily. Clinical exam, biochemical evaluations, and orbit computed tomographic scan were done at 7, 90, and 180 days post-procedure. After that, the animals were euthanized, and the orbital content was removed and prepared to light microscopy with morphometric evaluation and scanning electron microscopy examination. Statistical analysis was done by parametric and non-parametric analysis of variance, complemented by Dunn's and Tukey's tests (p<0.05). Results: All animals did not develop systemic toxicity throughout the experimental period and also did not have orbit infection, implant migration or extrusion. Morphological analysis demonstrated pseudocapsule around all implants. Bioglass® and single-phase Biosilicate® implants induced less inflammation and pseudocapsule formation than two-phase Biosilicate® cones. Seven days post-procedure, the inflammatory reaction was intense and gradually decreased throughout the experiment. Tissue reaction was least intense in animals receiving Bioglass® implants. Conclusions: We observe discrete differences among the studied materials, with best responses obtained with use of Bioglass® 45S5 and single-phase Biosilicate®. The authors agree these implants might be useful in the management of the anophthalmic socket. © 2012 Informa Healthcare USA, Inc.
Resumo:
It was verified that the asteroid Magnya has some physical and chemical characteristics similar to the bodies from Vesta family. However, astronomical observations revealed that Magnya is distant from these bodies. In the present work, we assumed that Magnya originated from Vesta and we try to justify its current distant orbital location taking into account the effects of close encounters between Magnya and Vesta. The methodology adopted involved an analytical approach considering the technique of the gravity assisted maneuver, also known as swing-by. We found that the energy variation achieved through a single swing-by between Vesta and Magnya are very small when compared to the variation that would be required to change the orbit of Magnya. The effects of multiple close encounters were also considered and discussed. We concluded that the possibility of multiple encounters is limited, and therefore, that Magnya should suffer other perturbations (such as resonances, collisions or close encounters with other bodies, for instance) that would provide the supposed change in its orbit.
Resumo:
This paper presents a study of a modeling scheme for the spin stabilized satellites attitude, entirely developed in terms of quaternion parametrization. The analysis includes numerical propagation of the rotational motion equation, considering the influence of the following torques: aerodynamic, gravity gradient, residual magnetic, eddy currents and the one due to the Lorentz force. Applications are developed considering the Brazilian Spin Stabilized Satellites SCD1 and SCD2, which are quite appropriated for verification and comparison of the theory with the real data generated and processed by the INPE's Satellite Control Center (SCC). The results show that for SCD1 and SCD2 the influence of the eddy current torque is bigger than the others ones, not only due to the orbit altitude, but also to other specific satellites characteristics. The influence of the torque due to Lorentz force is smaller than the others ones because of the dimension and the electrical charges of the SCD1 and SCD2. In all performed tests the errors remained within the dispersion range specified for the attitude determination system of INPE's SCC. The results show the feasibility of using the quaternion attitude parametrization for modeling the satellite dynamics of spin stabilized satellites.
Resumo:
Objective: Assess the occurrence of secondary brow ptosis after upper lid blepharoplasty. Methods: Forty-five individuals (n90 brows) submitted to upper lid blepharoplasty, were assessed by means of a comparative analysis using pre- and post-operatively digital photographs, in the primary position of the eye. The images were processed using ImageJ software, transferred to a computer, to an electronic Microsoft Excel 2002® worksheet. Angular measurements were used, taking the lateral canthal angle of the brow, the most medial point of the brow, the medial canthal angle and the lateral canthal angle of the lid as anatomical reference points. When the outer angles were reduced or the inner angles increased after surgery this was considered a brow ptosis. Individuals who had undergone lid surgery associated with the eyebrow, previous eyebrow surgery and those with eyelid ptosis were excluded. The difference between the pre-operative and post-operative measurements were analyzed statistically using the Student's t-test for paired samples and the angular variation was compared with their corresponding contralateral sample using Wilcoxon's non-parametric test. Results: The measurements obtained after the blepharoplasty show significant variations from those before the surgery, indicating that the correction of redundant tissues in the brow accentuates the tendency of the eyebrow to move down. The alterations are more important in the lateral portion of the eyebrow and they occur bilaterally. Conclusion: The assessment of angular measurements obtained pre- and post-operatively showed that there are secondary changes in the position of the eyebrow as a result of upper eyelid blepharoplasty. © 2012 Informa Healthcare USA, Inc.
Resumo:
The Picini tribe comprises 25 Old World woodpecker species grouped into seven genera that are widely distributed in Asia and include several representatives from the Eurasian region. Given the absence of detailed anatomical studies of Picini in the literature, the purposes of this study were to describe the jaw musculature of 14 species of Picini in detail and to compare the musculature patterns of these species. The results of this analysis indicate the following: (1) there is a clear association between the ventralis lateralis and dorsalis lateralis muscles through fleshy fibers that are connected in all species, (2) the jaw musculature of the genus Picus differs from that of other Picini genera in terms of the poor development of the protractor muscle system of the quadrate (M. protractor quadrati and M. protractor pterygoidei), (3) generally, the M. pseudotemporalis superficialis originates in the ventrocaudal region of the laterosphenoid (the lower part of the orbit), with the only noteworthy exception being an origin in the upper part of the orbit in Dinopium javanense, and (4) the protractor pterygoidei muscle is more developed in Blythipicus rubiginosus, Dinopium rafflesii, and D. javanense than in the other species. © 2012 Reginaldo José Donatelli.
Resumo:
An analytical approach for spin stabilized attitude propagation is presented, considering the coupled effect of the aerodynamic torque and the gravity gradient torque. A spherical coordination system fixed in the satellite is used to locate the satellite spin axis in relation to the terrestrial equatorial system. The spin axis direction is specified by its right ascension and the declination angles and the equation of motion are described by these two angles and the magnitude of the spin velocity. An analytical averaging method is applied to obtain the mean torques over an orbital period. To compute the average components of both aerodynamic torque and the gravity gradient torque in the satellite body frame reference system, an average time in the fast varying orbit element, the mean anomaly, is utilized. Afterwards, the inclusion of such torques on the rotational motion differential equations of spin stabilized satellites yields conditions to derive an analytical solution. The pointing deviation evolution, that is, the deviation between the actual spin axis and the computed spin axis, is also availed. In order to validate the analytical approach, the theory developed has been applied for spin stabilized Brazilian satellite SCD1, which are quite appropriated for verification and comparison of the data generated and processed by the Satellite Control Center of the Brazil National Research Institute (INPE). Numerical simulations performed with data of Brazilian Satellite SCD1 show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of the Brazilian Research Institute.
Resumo:
In the present paper a study is made in order to find an algorithm that can calculate coplanar orbital maneuvers for an artificial satellite. The idea is to find a method that is fast enough to be combined with onboard orbit determination using GPS data collected from a receiver that is located in the satellite. After a search in the literature, three algorithms are selected to be tested. Preliminary studies show that one of them (the so called Minimum Delta-V Lambert Problem) has several advantages over the two others, both in terms of accuracy and time required for processing. So, this algorithm is implemented and tested numerically combined with the orbit determination procedure. Some adjustments are performed in this algorithm in the present paper to allow its use in real-time onboard applications. Considering the whole maneuver, first of all a simplified and compact algorithm is used to estimate in real-time and onboard the artificial satellite orbit using the GPS measurements. By using the estimated orbit as the initial one and the information of the final desired orbit (from the specification of the mission) as the final one, a coplanar bi-impulsive maneuver is calculated. This maneuver searches for the minimum fuel consumption. Two kinds of maneuvers are performed, one varying only the semi major axis and the other varying the semi major axis and the eccentricity of the orbit, simultaneously. The possibilities of restrictions in the locations to apply the impulses are included, as well as the possibility to control the relation between the processing time and the solution accuracy. Those are the two main reasons to recommend this method for use in the proposed application.
Resumo:
Nowadays, L1 SBAS signals can be used in a combined GPS+SBAS data processing. However, such situation restricts the studies over short baselines. Besides of increasing the satellite availability, SBAS satellites orbit configuration is different from that of GPS. In order to analyze how these characteristics can impact GPS positioning in the southeast area of Brazil, experiments involving GPS-only and combined GPS+SBAS data were performed. Solutions using single point and relative positioning were computed to show the impact over satellite geometry, positioning accuracy and short baseline ambiguity resolution. Results showed that the inclusion of SBAS satellites can improve the accuracy of positioning. Nevertheless, the bad quality of the data broadcasted by these satellites limits their usage. © Springer-Verlag Berlin Heidelberg 2012.
Resumo:
In this work the chaotic behavior of a micro-mechanical resonator with electrostatic forces on both sides is suppressed. The aim is to control the system in an orbit of the analytical solution obtained by the Method of Multiple Scales. Two control strategies are used for controlling the trajectory of the system, namely: State Dependent Riccati Equation (SDRE) Control and Optimal Linear Feedback Control (OLFC). The controls proved effectiveness in controlling the trajectory of the system. Additionally, the robustness of each strategy is tested considering the presence of parametric errors and measurement noise in control. © 2012 American Institute of Physics.