988 resultados para Optical phase
Resumo:
This communication describes an improved one-step solid-phase extraction method for the recovery of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) from human plasma with reduced coextraction of endogenous plasma constituents, compared to that of the authors' previously reported method. The magnitude of the peak caused by endogenous plasma components in the chromatogram that eluted immediately before the retention time of M3G has been reduced (similar to 80%) significantly (p < 0.01) while achieving high extraction efficiencies for the compounds of interest, viz morphine, M6G, and M3G (93.8 +/- 2.5, 91.7 +/- 1.7, and 93.1 +/- 2.2%, respectively). Furthermore, when the improved solid-phase extraction method was used, the extraction cartridge-derived late-eluting peak (retention time 90 to 100 minutes) reported in our previous method, was no longer present in the plasma extracts. Therefore the combined effect of reducing the recovery of the endogenous components of plasma that chromatographed just before the retention time of M3G and the removal of the late-eluting, extraction cartridge-derived peak has resulted in a decrease in the chromatographic run-time to 20 minutes, thereby increasing the sample throughput by up to 100%.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalization group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.
Resumo:
Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.
Resumo:
A sensitive and reproducible solid-phase extraction (SPE) method for the quantification of oxycodone in human plasma was developed. Varian Certify SPE cartridges containing both C-8 and benzoic acid functional groups were the most suitable for the extraction of oxycodone and codeine (internal standard), with consistently high (greater than or equal to 80%) and reproducible recoveries. The elution mobile phase consisted of 1.2 ml of butyl chloride-isopropanol (80:20, v/v) containing 2% ammonia. The quantification limit for oxycodone was 5.3 pmol on-column. Within-day and inter-day coefficients of variation were 1.2% and 6.8% respectively for 284 nM oxycodone and 9.5% and 6.2% respectively for 28.4 nM oxycodone using 0.5-ml plasma aliquots. (C) 1998 Elsevier Science BN. All rights reserved.
Resumo:
We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop due to measurement backaction noise alone.
Resumo:
We present a potential realization of the Greenberger-Horne-Zeilinger all or nothing contradiction of quantum mechanics with local realism using phase measurement techniques in a simple photon number triplet. Such a triplet could be generated using nondegenerate parametric oscillation. [S0031-9007(98)07671-6].
Resumo:
The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
An experimental study on the ternary system PbO-ZnO-SiO2, in air by high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis was carried out as part of the wider research program on the six-component system PbO-ZnO-SiO2-CaO-FeO-Fe2O3, which combines experimental and thermodynamic computer modeling techniques to characterize zinc and lead industrial slags. Liquidus and solidus data were reported for all primary phase fields in the system PbO-ZnO-SiO2 in the temperature range 640 degrees C to 1400 degrees C (913 to 1673 K).
Resumo:
X-Ray diffraction is reported from mesoporous silicate films grown at the air/water interface. The films were studied both as powdered films, and oriented on silicon or mica sheets. At early stages of growth we observe Bragg diffraction from a highly ordered cubic phase, with both long and short d-spacing peaks. We have assigned this as a discontinuous micellar Pm3n phase in which the silica is partly ordered. Later films retain only the known hexagonal p6m peaks and have lost any order both at short d-spacings and the longer d-spacing Bragg peaks characteristic of the cubic structure. The silica framework is considerably expanded from that in bulk amorphous silica, average Si Si distances are some 30% greater. Incorporation of glycerol or polyethylene glycol preserves the earlier cubic structure. To be consistent with earlier, in situ, X-ray and neutron reflectivity data we infer that both structures are produced after a phase transition from a less-ordered him structure late in the induction phase. The structural relations between the film Pm3n and p6m phase(s) and the known bulk SBA-1 and MCM-41 phases are briefly discussed.
Resumo:
An extension of the Adachi model with the adjustable broadening function, instead of the Lorentzian one, is employed to model the optical constants of GaP, InP, and InAs. Adjustable broadening is modeled by replacing the damping constant with the frequency-dependent expression. The improved flexibility of the model enables achieving an excellent agreement with the experimental data. The relative rms errors obtained for the refractive index equal 1.2% for GaP, 1.0% for InP, and 1.6% for InAs. (C) 1999 American Institute of Physics. [S0021-8979(99)05807-7].
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
The extension of Adachi's model with a Gaussian-like broadening function, in place of Lorentzian, is used to model the optical dielectric function of the alloy AlxGa1-xAs. Gaussian-like broadening is accomplished by replacing the damping constant in the Lorentzian line shape with a frequency dependent expression. In this way, the comparative simplicity of the analytic formulas of the model is preserved, while the accuracy becomes comparable to that of more intricate models, and/or models with significantly more parameters. The employed model accurately describes the optical dielectric function in the spectral range from 1.5 to 6.0 eV within the entire alloy composition range. The relative rms error obtained for the refractive index is below 2.2% for all compositions. (C) 1999 American Institute of Physics. [S0021-8979(99)00512-5].
Resumo:
Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.