995 resultados para Opioid-receptor Knockout


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotine has been shown to stimulate the release of vasopressin and to cause significant hemodynamic changes. The mechanisms leading to enhanced vasopressin secretion and the vascular consequences of the high plasma vasopressin levels during nicotine infusion have not yet been determined. Therefore, the purposes of the present study were 1) to examine in normal conscious rats the role of opioid peptides in the nicotine-induced increase in plasma vasopressin levels and 2) to assess the role of vasopressin in the hemodynamic effects of nicotine (20 micrograms/min for 15 min) using a specific V1 antagonist of the vascular actions of vasopressin. Plasma vasopressin levels were significantly increased in the nicotine-treated animals (39.5 +/- 10 vs. 3.7 +/- 0.6 pg/ml in the controls, P less than .01). Pretreatment with naloxone, an antagonist of opioids at their receptors, did not reduce the vasopressin levels (47.7 +/- 9 pg/ml). Nicotine also increased mean blood pressure (122.5 +/- 2.5 to 145.2 +/- 3.3 mm Hg, P less than .01) and decreased heart rate (461 +/- 6 to 386 +/- 14.5 beats/min, P less than .05). Administration of the vasopressin V1 antagonist before the nicotine infusion did not affect the systemic hemodynamics or the regional blood flow distribution, as assessed by radiolabeled microspheres. Thus, these results suggest that the nicotine-induced secretion of vasopressin is not mediated by opioid receptors and that the high plasma vasopressin levels do not exert any significant hemodynamic effect on cardiac output or blood flow distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition by CD8+ cytotoxic T lymphocytes (CTLs) of antigenic peptides bound to major histocompatibility class (MHC) I molecules on target cells leads to sustained calcium mobilization and CTL degranulation resulting in perforin-dependent killing. We report that beta1 and beta3 integrin-mediated adhesion to extracellular matrix proteins on target cells and/or surfaces dramatically promotes CTL degranulation. CTLs, when adhered to fibronectin but not CTL in suspension, efficiently degranulate upon exposure to soluble MHC.peptide complexes, even monomeric ones. This adhesion induces recruitment and activation of the focal adhesion kinase Pyk2, the cytoskeleton linker paxillin, and the Src kinases Lck and Fyn in the contact site. The T cell receptor, by association with Pyk2, becomes part of this adhesion-induced activation cluster, which greatly increases its signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto presenta el diseño, test y validación de una cabecera de recepción multiconstelación y multifrecuencia para Sistemas de Navegación Global por Satélite (GNSS). El receptor presentado ha sido diseñado para adquirir las bandas E5/L5 y E1/L1 de los sistemas Galileo y NAVSTAR-GPS. Para trasladar en frecuencia las dos bandas a la vez, se implementa un receptor con arquitectura superheterodina basado en un mezclador de rechazo a frecuencia imagen (IRM). Medidas de ambos sistemas han sido realizadas validando el correcto funcionamiento del receptor en la banda E1/L1. Para ello no sólo se han adquirido los satélites de la constelación GPS, sino que además se han adquirido con éxito los satélites GIOVE-A/B utilizados en la fase de validación en órbita del sistema europeo Galileo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto se centra en el análisis de señales GPS, utilizando un receptor software desarrollado con Matlab en un proyecto de investigación para la Agencia Espacial Europea (ESA), llevado a cabo por parte del departamento de Telecomunicaciones e Ingeniería de Sistemas de la ETSE. Este software utiliza técnicas de procesado de señal de alta sensibilidad (HS-GNSS) que permite al usuario determinar su posición en entornos de difícil propagación como puede ser el caso de los escenarios interiores. Los datos experimentales se analizan en función del nivel de multipath que afecta a la señal de cada uno de los satélites, y la degradación que los escenarios interiores provocan en las señales, a causa del mobiliario, paredes, personas, etc. Para analizar los datos experimentales, se ha utilizado una métrica presentada en el congreso internacional EuCAP 2009, con la que es posible caracterizar las señales en función del nivel de multipath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of <or= 5 mg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational changes of channel activation: Five enhanced green fluorescent protein (EGFP) molecules (green cylinders) were integrated into the intracellular part of the homopentameric ionotropic 5-HT3 receptor. This allowed the detection of extracellular binding of fluorescent ligands (?) to EGFP by FRET, and also enabled the quantification of agonist-induced conformational changes in the intracellular region of the receptor by homo-FRET between EGFPs. The approach opens novel ways for probing receptor activation and functional screening of therapeutic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show here that the alpha, beta, and gamma isotypes of peroxisome proliferator-activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARalpha and beta expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARalpha, beta, and gamma mutant mice, we demonstrate that PPARalpha and beta are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARalpha is mainly involved in the early inflammation phase of the healing, whereas PPARbeta is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARbeta mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARalpha and beta in adult mouse epidermal repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each cell is equipped with two copies (alleles) of each autosomal gene. While the vast majority use both alleles, occasional genes are expressed from a single allele. The reason for mono-allelic expression is not always evident and can serve distinct purposes. First, it may facilitate the tight control over the dosage of certain gene products such as some growth factors and their receptors or X-linked genes. Second, the differential usage of the two parental alleles may reflect the mechanisms that ensure mono-specificity, e.g. olfactory receptors, T and B cell receptors. The context of allele-specific expression of the murine Ly49 natural killer (NK) cell receptor genes suggests that their allele-specific expression reflects a process that generates clonal variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.