782 resultados para Olfactory Recognition
Resumo:
Nitric oxide (NO) and Reelin both modulate neuronal plasticity in developing and mature synaptic networks. We recently showed a loss of neuronal nitric oxide synthase (nNOS) protein in the olfactory bulb of reeler mutants and advanced the hypothesis that the Reelin and NO signalling pathways may influence each other. We now studied the distribution of NO sensitive guanylyl cyclase (NOsGC), Reelin and its receptor Apolipoprotein E2 (ApoEr2) in the olfactory bulb by multiple fluorescence labelling and tested whether nNOS and ApoEr2 colocalize in this area. We also essayed the protein content of NOsGC in the reeler olfactory bulb and tested whether there are any changes in nNOS and NOsGC protein in other reeler brain areas. Olfactory bulb interneurons expressing ApoEr2 and nNOS are only few in the glomerular layer but represent the large majority of granule cell layer interneurons. Conversely, NOsGC interneurons are rare in the granule cell layer and abundant as periglomerular cells. Reelin containing periglomerular cells almost entirely belong to the NOsGC subset. These data further support the hypothesis of a reciprocal signalling between Reelin/NOsGC and ApoEr2/nNOS expressing neurons to affect olfactory bulb activity. We also show that a significant rise in NOsGC content accompanies the decrease of nNOS protein in the reeler olfactory bulb. The same reciprocal changes present in the cortex/striatum and the hippocampus of reeler mice. Thus, the influence that the deficit of extracellular Reelin seems to exert on nNOS and its receptor is not limited to the olfactory bulb but is a general feature of the reeler brain.
Resumo:
Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.
Resumo:
The expression of adenosine A2a receptors (A2aR) in the mammalian striatum is well known. In contrast the exact distribution of A2aR in other regions of the central nervous system remains unclear. The aim of this study was to investigate the A2aR gene expression in the rat olfactory bulb and spinal cord, two regions which are seldom included in mapping studies. Secondly, we compared the A2aR expression in the rat and in the mouse brain. Hybridization histochemistry was performed with an S35-labelled radioactive oligonucleotide probe. The results show strong expression of A2aR in the mouse and rat striatum in accordance with previous reports. In the olfactory bulb a weak but specific expression of A2aR was found in the granular cell layer in both species. In contrast, no significant expression of the A2aR gene was observed in other parts of the brain or the rat spinal cord. The presence of the A2aR in the mammalian olfactory bulb suggests a functional role for this receptor in olfaction.