987 resultados para Off-grid
Resumo:
Gemstone Team Crime Prevention and Perception
Resumo:
© 2014 .The adoption of antisense gene silencing as a novel disinfectant for prokaryotic organisms is hindered by poor silencing efficiencies. Few studies have considered the effects of off-targets on silencing efficiencies, especially in prokaryotic organisms. In this computational study, a novel algorithm was developed that determined and sorted the number of off-targets as a function of alignment length in Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv. The mean number of off-targets per a single location was calculated to be 14.1. ±. 13.3 and 36.1. ±. 58.5 for the genomes of E. coli K-12 MG1655 and M. tuberculosis H37Rv, respectively. Furthermore, when the entire transcriptome was analyzed, it was found that there was no general gene location that could be targeted to minimize or maximize the number of off-targets. In an effort to determine the effects of off-targets on silencing efficiencies, previously published studies were used. Analyses with acpP, ino1, and marORAB revealed a statistically significant relationship between the number of short alignment length off-targets hybrids and the efficacy of the antisense gene silencing, suggesting that the minimization of off-targets may be beneficial for antisense gene silencing in prokaryotic organisms.
Resumo:
info:eu-repo/semantics/submittedForPublication
Resumo:
The last few years have seen a substantial increase in the geometric complexity for 3D flow simulation. In this paper we describe the challenges in generating computation grids for 3D aerospace configuations and demonstrate the progress made to eventually achieve a push button technology for CAD to visualized flow. Special emphasis is given to the interfacing from the grid generator to the flow solver by semi-automatic generation of boundary conditions during the grid generation process. In this regard, once a grid has been generated, push button technology of most commercial flow solvers has been achieved. This will be demonstrated by the ad hoc simulation for the Hopper configuration.
Resumo:
Sound waves are propagating pressure fluctuations, which are typically several orders of magnitude smaller than the pressure variations in the flow field that account for flow acceleration. On the other hand, these fluctuations travel at the speed of sound in the medium, not as a transported fluid quantity. Due to the above two properties, the Reynolds averaged Navier–Stokes equations do not resolve the acoustic fluctuations. This paper discusses a defect correction method for this type of multi-scale problems in aeroacoustics. Numerical examples in one dimensional and two dimensional are used to illustrate the concept. Copyright (C) 2002 John Wiley & Sons, Ltd.
Resumo:
[This abstract is based on the authors' abstract.]Three new standards to be applied when adopting commercial computer off-the-shelf (COTS) software solutions are discussed. The first standard is for a COTS software life cycle, the second for a software solution user requirements life cycle, and the third is a checklist to help in completing the requirements. The standards are based on recent major COTS software solution implementations.
Resumo:
The effect of a high electric current density on the interfacial reactions of micro ball grid array solder joints was studied at room temperature and at 150 °C. Four types of phenomena were reported. Along with electromigration-induced interfacial intermetallic compound (IMC) formation, dissolution at the Cu under bump metallization (UBM)/bond pad was also noticed. With a detailed investigation, it was found that the narrow and thin metallization at the component side produced “Joule heating” due to its higher resistance, which in turn was responsible for the rapid dissolution of the Cu UBM/bond pad near to the Cu trace. During an “electromigration test” of a solder joint, the heat generation due to Joule heating and the heat dissipation from the package should be considered carefully. When the heat dissipation fails to compete with the Joule heating, the solder joint melts and molten solder accelerates the interfacial reactions in the solder joint. The presence of a liquid phase was demonstrated from microstructural evidence of solder joints after different current stressing (ranging from 0.3 to 2 A) as well as an in situ observation. Electromigration-induced liquid state diffusion of Cu was found to be responsible for the higher growth rate of the IMC on the anode side.
Resumo:
This paper evaluates the shearing behavior of ball grid array (BGA) solder joints on Au/Ni/Cu pads of FR4 substrates after multiple reflow soldering. A new Pb-free solder, Sn–3Ag–0.5Cu–8In (SACI), has been compared with Sn–3Ag–0.5Cu (SAC) and Sn–37Pb (SP) solders, in terms of fracture surfaces, shearing forces and microstructures. Three failure modes, ball cut, a combination of solder shear and solder/pad bond separation, and pad lift, are assessed for the different solders and reflow cycles. It is found that the shearing forces of the SP and SAC solder joints tend to increase slightly with an increase in the number of reflow cycles due to diffusion-induced solid solution strengthening of the bulk solder and augmentation of the shearing area. However, the shearing forces of the SACI solder joints decrease slightly after four cycles of reflow, which is ascribed to the thermal degradation of both the solder/intermetallic compound (IMC) and IMC/Ni interfaces. The SACI solder joints yield the highest strengths, whereas the SP solder joints give the smallest values, irrespective of the number of reflow cycles. Thickening of the interfacial IMC layer and coarsening of the dispersing IMC particles within the bulk solders were also observed. Nevertheless, the variation of shearing forces and IMC thickness with different numbers of reflow cycles was not so significant since the Ni under layer acted as an effective diffusion barrier. In addition, the initially-formed IMC layer retarded the further extensive dissolution of the pad material and its interaction with the solder
Resumo:
Ball shear test is the most common test method used to assess the reliability of bond strength for ball grid array (BGA) packages. In this work, a combined experimental and numerical study was carried out to realize of BGA solder interface strength. Solder mask defined bond pads on the BGA substrate were used for BGA ball bonding. Different bond pad metallizations and solder alloys were used. Solid state aging at 150degC up to 1000 h has been carried out to change the interfacial microstructure. Cross-sectional studies of the solder-to-bond pad interfaces was conducted by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray (EDX) analyzer to investigate the interfacial reaction phenomena. Ball shear tests have been carried out to obtain the mechanical strength of the solder joints and to correlate shear behaviour with the interfacial reaction products. An attempt has been taken to realize experimental findings by Finite Element Analysis (FEA). It was found that intermetallic compound (IMC) formation at the solder interface plays an important role in the BGA solder bond strength. By changing the morphology and the microchemistry of IMCs, the fracture propagation path could be changed and hence, reliability could be improved
Resumo:
Image inpainting refers to restoring a damaged image with missing information. The total variation (TV) inpainting model is one such method that simultaneously fills in the regions with available information from their surroundings and eliminates noises. The method works well with small narrow inpainting domains. However there remains an urgent need to develop fast iterative solvers, as the underlying problem sizes are large. In addition one needs to tackle the imbalance of results between inpainting and denoising. When the inpainting regions are thick and large, the procedure of inpainting works quite slowly and usually requires a significant number of iterations and leads inevitably to oversmoothing in the outside of the inpainting domain. To overcome these difficulties, we propose a solution for TV inpainting method based on the nonlinear multi-grid algorithm.
Resumo:
This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.