834 resultados para OPTIMIZED DYNAMICAL REPRESENTATION
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increasing number of space debris in operating regions around the earth constitutes a real threat to space missions. The goal of the research is to establish appropriate scientific-technological conditions to prevent the destruction and/or impracticability of spacecraft in imminent collision in these regions. A definitive solution to this problem has not yet been reached with the degree of precision that the dynamics of spatial objects (vehicle and debris) requires mainly due to the fact that collisions occur in chains and fragmentation of these objects in the space environment. This fact threatens the space missions on time and with no prospects for a solution in the near future. We present an optimization process in finding the initial conditions (CIC) to collisions, considering the symmetry of the distributions of maximum relative positions between spatial objects with respect to the spherical angles. For this, we used the equations of the dynamics on the Clohessy-Witshire, representing a limit of validation that is highly computationally costly. We simulate different maximum relative positions values of the corresponding initial conditions given in terms of spherical angles. Our results showed that there are symmetries that significantly reduce operating costs, such that the search of the CIC is advantageously carried out up to 4 times the initial processing routine. Knowledge of CIC allows the propulsion system operating vehicle implement evasive maneuvers before impending collisions with space debris.
Resumo:
We show that the parametrized Wave-Packet Phase Space representation, which has been studied earlier by one of the authors, is equivalent to a Squeezed States Phase Space Representation of quantum mechanics. © 1988.
Resumo:
The optimized δ-expansion is used to study vacuum polarization effects in the Walecka model. The optimized δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Vacuum effects on self-energies and the energy density of nuclear matter are studied up to script O sign(δ2). When exchange diagrams are neglected, the traditional relativistic Hartree approximation (RHA) results are exactly reproduced and, using the same set of parameters that saturate nuclear matter in the RHA, a new stable, tightly bound state at high density is found.
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
We compute the tree level cross section for gluon-gluon elastic scattering taking into account a dynamical gluon mass, and show that this mass scale is a natural regulator for this subprocess cross section. Using an eikonal approach in order to examine the relationship between this gluon-gluon scattering and the elastic pp and (p) over barp channels, we found that the dynamical gluon mass is of the same order of magnitude as the ad hoc infrared mass scale m(0) underlying eikonalized QCD-inspired models. We argue that this correspondence is not an accidental result, and that this dynamical scale indeed represents the onset of nonperturbative contributions to the elastic hadron-hadron scattering. We apply the eikonal model with a dynamical infrared mass scale to obtain predictions for sigma(tot)(pp,(p) over barp), rho(pp,(p) over barp), slope B-pp,B-(p) over barp, and differential elastic scattering cross section d sigma((p) over barp)/dt at Tevatron and CERN-LHC energies.
Resumo:
The optimized delta-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the lambda phi(4) model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the delta expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.
Resumo:
We show that by using second-order differential operators as a realization of the so(2,1) Lie algebra, we can extend the class of quasi-exactly-solvable potentials with dynamical symmetries. As an example, we dynamically generate a potential of tenth power, which has been treated in the literature using other approaches, and discuss its relation with other potentials of lowest orders. The question of solvability is also studied. © 1991 The American Physical Society.
Resumo:
The numerical renormalization-group method was originally developed to calculate the thermodynamical properties of impurity Hamiltonians. A recently proposed generalization capable of computing dynamical properties is discussed. As illustrative applications, essentially exact results for the impurity specttral densities of the spin-degenerate Anderson model and of a model for electronic tunneling between two centers in a metal are presented. © 1991.
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we consider non-ideal excitation devices such as DC motors with restrictenergy output capacity. When such motors are attached to structures which needexcitation power levels similar to the source power capacity, jump phenomena and theincrease in power required near resonance characterize the Sommerfeld Effect, actingas a sort of an energy sink. One of the problems often faced by designers of suchstructures is how to drive the system through resonance and avoid this energy sink.Our basic structural model is a simple portal frame driven by a num-ideal powersource-(NIPF). We also investigate the absorption of resonant vibrations (nonlinearand chaotic) by means of a nonlinear sub-structure known as a Nonlinear Energy Sink(NES). An energy exchange process between the NIPF and NES in the passagethrough resonance is investigated, as well the suppression of chaos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Letras - IBILCE