993 resultados para OPERACIONES BANCARIAS DE INVERSION
Resumo:
¿Qué es la metodología Kaizen y para que se utiliza? Kaizen, En japonés significa "mejora", o "cambio para la mejora" se refiere a la filosofía o las prácticas que se centran en la mejora continua de los procesos de fabricación, ingeniería y administración de empresas. La herramienta se implementó por primera vez en la industria japonesa después de la Segunda Guerra Mundial, logrando resultados destacables en el conjunto de industrias niponas. Desde sus inicios, la metodología se ha aplicado en múltiples proyectos industriales, de medicina, de estados de gobiernos, de empresas de servicios bancarios y otras industrias con excelentes resultados. Sin embargo no se han encontrado ejemplos directos en empresas de tipo agropecuario. Mediante la mejora de las operaciones y los procesos estandarizados, Kaizen tiene como objetivo eliminar todas aquellas operaciones o acciones que no contribuyen con las metas de la organización. En la actualidad la metodología Kaizen se ha extendido por todo el mundo y se está aplicando en diversos tipos de organizaciones. Distintas empresas adoptan la metodología y la modifican para darle las características particulares que se adapten al tipo de organización. ¿Por qué aplicar la metodología Kaizen en la producción en feedlot? Feedlot es un término inglés, de uso cada vez más frecuente en Argentina, para designar la versión contemporánea de lo que antaño eran los corrales de engorde de ganado. Está técnica está muy difundida entre los productores agropecuarios locales. Si bien es una técnica que ofrece muchas ventajas competitivas la misma ocasiona algunos problemas productivos recurrentes tales como enfermedades, maltrato animal, y otros inconvenientes relacionados con el medio ambiente. Durante la presente investigación se propone analizar las características de la producción en feedlot y adaptar e implementar el uso de la metodología Kaizen en la resolución de los problemas recurrentes que se dan en este tipo de prácticas agropecuarias.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Classe impartida pel director de la Divisió d'Operacions de Premsa del COOB'92 en el curs universitari sobre Olimpisme organitzat pel CEO-UAB al febrer de 1992 sobre la planificació de les operacions de premsa per als Jocs Olímpics de Barcelona'92.
Resumo:
L'objectiu d'aquest projecte es dissenyar i implementar en Java una interfície gràfica que permeti simular l'arquitectura VLIW. Ha d'interactuar amb un simulador ja existent, VEX, i amb l'usuari. VEX permet analitzar, desenvolupar i depurar codi escrit en C sobre un processador VLIW configurable, des dels recursos hardware fíns al comportament de la "caché". L'interfície gràfica desenvolupada es diu JavaVEX. Té el gran avantatge d'evitar la introducció de les comandes de text que necesita VEX perquè son substituïdes per elements. És una eina més intuïtiva, ràpida i eficient. JavaVEX mostra informació sobre el codi C traduït a instruccions VLIW de fins a 4 operacions. També mostra els resultats de les instrucciones VLIW simulades. JavaVEX s'ha incorporat a un LiveCD. Així es pot executar l'aplicació sobre qualsevol ordinador. La finalitat docent de JavaVEX és ser utilitzada en les pràctiques de l'assignatura Arquitectura per a Computadors 2.
Resumo:
The Euler characteristic of a finite category is defined and shown to be compatible with Euler characteristics of other types of object, including orbifolds. A formula is proved for the cardinality of a colimit of sets, generalizing the classical inclusion-exclusion formula. Both rest on a generalization of Rota's Möbius inversion from posets to categories.
Resumo:
The immunoloical profile of acquired immunodeficiency syndrome (AIDS) and chronic lymphadenopathy syndrome (CLAS) in 15 and 11 Brazilian patients, respectively, was studied. The AIDS patients showed reduced percentage of total T (CD3) and T-helper-inducer (CD4) lymphocytes, relative increase in numbers of T-suppressor-cytotoxic (CD8) cells and a marked inversion of T-helper-inducer/suppressor-cytotoxic (CD4/CD8) ratio. Lymphoproliferative responses to PHA, ConA, PPD and PWM were diminished. Hypergamaglobulinemia and high levels of circulating immune complexes were also found. The CLAS patients also showed important immunological alterations, but not so intense as those with AIDS. These data seems to be similar to those observed in other parts of the world.
Resumo:
Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here, we use genome-wide next-generation sequencing of DNA pools ('pool-seq') from three populations collected along the North American east coast to examine patterns of latitudinal differentiation. Comparing the genomes of these populations is particularly interesting since they exhibit clinal variation in a number of important life history traits. We find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways. We observe particularly strong differentiation on chromosome 3R, especially within the cosmopolitan inversion In(3R)Payne, which contains a large number of clinally varying genes. While much of the differentiation might be driven by clinal differences in the frequency of In(3R)P, we also identify genes that are likely independent of this inversion. Our results provide genome-wide evidence consistent with pervasive spatially variable selection acting on numerous loci and pathways along the well-known North American cline, with many candidates implicated in life history regulation and exhibiting parallel differentiation along the previously investigated Australian cline.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
PURPOSE: To evaluate the feasibility of visualizing the stent lumen using coronary magnetic resonance angiography in vitro. MATERIAL AND METHODS: Nineteen different coronary stents were implanted in plastic tubes with an inner diameter of 3 mm. The tubes were positioned in a plastic container filled with gel and included in a closed flow circuit (constant flow 18 cm/sec). The magnetic resonance images were obtained with a dual inversion fast spin-echo sequence. For intraluminal stent imaging, subtraction images were calculated from scans with and without flow. Subsequently, intraluminal signal properties were objectively assessed and compared. RESULTS: As a function of the stent type, various degrees of in-stent signal attenuation were observed. Tantalum stents demonstrated minimal intraluminal signal attenuation. For nitinol stents, the stent lumen could be identified, but the intraluminal signal was markedly reduced. Steel stents resulted in the most pronounced intraluminal signal voids. CONCLUSIONS: With the present technique, radiofrequency penetration into the stents is strongly influenced by the stent material. Thesefindings may have important implicationsforfuture stent design and stent imaging strategies.
Resumo:
The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.
Resumo:
Developing a predictive understanding of subsurface flow and transport is complicated by the disparity of scales across which controlling hydrological properties and processes span. Conventional techniques for characterizing hydrogeological properties (such as pumping, slug, and flowmeter tests) typically rely on borehole access to the subsurface. Because their spatial extent is commonly limited to the vicinity near the wellbores, these methods often cannot provide sufficient information to describe key controls on subsurface flow and transport. The field of hydrogeophysics has evolved in recent years to explore the potential that geophysical methods hold for improving the quantification of subsurface properties and processes relevant for hydrological investigations. This chapter is intended to familiarize hydrogeologists and water-resource professionals with the state of the art as well as existing challenges associated with hydrogeophysics. We provide a review of the key components of hydrogeophysical studies, which include: geophysical methods commonly used for shallow subsurface characterization; petrophysical relationships used to link the geophysical properties to hydrological properties and state variables; and estimation or inversion methods used to integrate hydrological and geophysical measurements in a consistent manner. We demonstrate the use of these different geophysical methods, petrophysical relationships, and estimation approaches through several field-scale case studies. Among other applications, the case studies illustrate the use of hydrogeophysical approaches to quantify subsurface architecture that influence flow (such as hydrostratigraphy and preferential pathways); delineate anomalous subsurface fluid bodies (such as contaminant plumes); monitor hydrological processes (such as infiltration, freshwater-seawater interface dynamics, and flow through fractures); and estimate hydrological properties (such as hydraulic conductivity) and state variables (such as water content). The case studies have been chosen to illustrate how hydrogeophysical approaches can yield insights about complex subsurface hydrological processes, provide input that improves flow and transport predictions, and provide quantitative information over field-relevant spatial scales. The chapter concludes by describing existing hydrogeophysical challenges and associated research needs. In particular, we identify the area of quantitative watershed hydrogeophysics as a frontier area, where significant effort is required to advance the estimation of hydrological properties and processes (and their uncertainties) over spatial scales relevant to the management of water resources and contaminants.
Resumo:
Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions
Resumo:
RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.