989 resultados para Nuclear Localization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the ability of the recently established quasilocal density functional theory for describing the isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained calculations for obtaining the cubic and inverse energy weighted moments (sum rules) of the RPA strength. The meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny forces and an excellent agreement is found with HF+RPA results previously reported in literature. The nuclear matter compression modulus predicted in our model lies in the range 210230 MeV which agrees with earlier findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron and proton single-particle spectral functions in asymmetric nuclear matter fulfill energy-weighted sum rules. The validity of these sum rules within the self-consistent Green's function approach is investigated. The various contributions to these sum rules and their convergence as a function of energy provide information about correlations induced by the realistic interaction between the nucleons. The study of the sum rules in asymmetric nuclear matter exhibits the isospin dependence of the nucleon-nucleon correlations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well-established prediction of finite-temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such a phase transition for homogeneous nuclear matter within the self-consistent Green's function approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the ontogenesis of dorsal root ganglia (DRG), the immunoreactivity to substance P (SP) and calbindin D-28k (CaBP) appears in chickens at embryonic day 5 (E5) and E10 respectively. To establish the birthdates of primary sensory neurons expressing SP or CaBP, chick embryos were given repetitive intra-amniotic injections of [3H]-thymidine. The neuroblasts giving rise to SP-expressing neurons were labeled up to E6 while those generating CaBP-immunoreactive neurons stopped to incorporate [3H]-thymidine before E5.5. This finding indicates that neurons exhibiting distinct phenotypes may originate from neuroblasts which arrest to proliferate at close but distinct stages of development. To determine whether SP and CaBP are co-expressed or not in DRG neurons, chick embryos at E12, E18, and chickens two weeks after hatching were perfused and fixed to detect simultaneously SP- and CaBP-immunoreactivity in DRG sections. The results showed that SP and CaBP were transiently co-expressed by a subset of neurons at E12. Later, however, the SP-immunoreactivity was gradually lost by these ganglion cells, so that the SP- and CaBP-immunoreaction defined two distinct neuronal subpopulations after hatching. In conclusion, most CaBP-immunoreactive DRG cells derive from a subset of neurons in which SP and CaBP are transiently co-localized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This study is a single-institution validation of video-assisted thoracoscopic (VATS) resection of a small solitary pulmonary nodule (SPN) previously localized by a CT-guided hook-wire system in a consecutive series of 45 patients. METHODS: The records of all patients undergoing VATS resection for SPN preoperatively localized by CT-guided a hook-wire system from January 2002 to December 2004 were assessed with respect to failure to localize the lesion by the hook-wire system, conversion thoracotomy rate, duration of operation, postoperative complications, and histology of SPN. RESULTS: Forty-five patients underwent 49 VATS resections, with simultaneous bilateral SPN resection performed in 4. Preoperative CT-guided hook-wire localization failed in two patients (4%). Conversion thoracotomy was necessary in two patients (4%) because it was not possible to resect the lesion by a VATS approach. The average operative time was 50 min. Postoperative complications occurred in 3 patients (6%), one hemothorax and two pneumonia. The mean hospital stay was 5 days (range: 2-18 days). Histological assessment revealed inflammatory disease in 17 patients (38%), metastasis in 17 (38%), non-small-cell lung cancer (NSCLC) in 4 (9%), lymphoma in 3 (6%), interstitial fibrosis in 2 (4%), histiocytoma in one (2%), and hamartoma in one (2%). CONCLUSIONS: Histological analysis of resected SPN revealed unexpected malignant disease in more than 50% of the patients indicating that histological clarification of SPN seems warranted. Video-assisted thoracoscopic resection of SPN previously localized by a CT-guided hook-wire system is related to a low conversion thoracotomy rate, a short operation time, and few postoperative complications, and it is well suited for the clarification of SPN.