949 resultados para Nonstructural Glycoprotein


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An emerging concept is that disulfide bonds can act as a dynamic scaffold to present mature proteins in different conformational and functional states on the cell surface. Two examples are the conversion of the receptor, integrin a alpha(IIb)beta(3), from a low affinity to a high affinity state, and the interaction of CD4 receptor with the HIV-1 envelope glycoprotein gp120 to promote virus-cell fusion. In both of these cases there is a remodeling of the protein disulfide bonding pattern. The formation and rearrangement of disulfide bonds is modulated by a family of enzymes known as the thiol isomerases, which include protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72. While these enzymes were reported originally to be restricted in location to the endoplasmic reticulum, in some cells thiol isomerases are found on the cell surface. This may indicate a wider role for these enzymes in cell function. In platelets it has been shown that reagents that react with cell surface sulfhydryl groups are capable of blocking a number of functional responses, including integrin-mediated aggregation, adhesion, and granule secretion. Furthermore, the use of function blocking antibodies to either PDI or ERp5 causes inhibition of these functional responses. This review summarizes current knowledge of the extracellular regulation of disulfide exchange and the implications of this in the regulation of cell function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and heparan sulfate bind gp120 via V3 and, possibly, a CD4-induced domain. They exert anti-HIV activity by interfering with the HIV envelope glycoprotein ( Env)/cell-surface interaction. Env also binds cell-surface glycosaminoglycans. Here, using surface plasmon resonance, we observed an inverse relationship between heparin binding by gp120 and its thiol content. In vitro, and in conditions in which gp120 could bind CD4, heparin and heparan sulfate reduced PDI-mediated gp120 reduction by approximately 80%. Interaction of Env with the surface of lymphocytes treated using sodium chlorate, an inhibitor of glycosaminoglycan synthesis, led to gp120 reduction. We conclude that besides their capacity to block Env/cell interaction, soluble glycosaminoglycans can effect anti-HIV activity via interference with PDI- mediated gp120 reduction. In contrast, their presence at the cell surface is dispensable for Env reduction during the course of interaction with the lymphocyte surface. This work suggests that the reduction of exofacial proteins in various diseases can be inhibited by compounds targeting the substrates ( not by targeting PDI, as is usually done), and that glycosaminoglycans that primarily protect proteins by preserving them from proteolysis also have a role in preventing reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many clade C isolates of HIV-1 do not react with monoclonal antibody (MAb) 2G12, a broad-ranging human neutralizing MAb that recognizes high mannose carbohydrate groups attached to glycoprotein gp120. We reintroduced a partial and complete 2G12 epitope into a clade C background, HIV-1(CN54), and examined the antibody reactivity of the resulting recombinant molecules. Two glycosylation sites recovered 2G12 binding completely, but some binding was evident after the reintroduction of a single glycosylation site at Asn295.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the role of glycosylation of the envelope glycoprotein E2 of bovine viral diarrhoea virus (BVDV), produced in insect cells, in BVDV infection. When amino acids predicated to code for the C-terminal N-linked glycosylation site were mutated the resulting protein was less efficient than wild type protein at preventing infection of susceptible cells with BVDV. In addition, mutational analysis showed that a further two predicted N-terminal N-linked glycosylation sites of E2 are required for efficient production of recombinant protein. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snake venoms contain a number of proteins that interact with components of the haemostatic system that promote or inhibit events leading to blood- clot formation. The snake- venom protein convulxin ( Cvx) binds glycoprotein ( GP) VI, the platelet receptor for collagen, and triggers signal transduction. Here, the 2.7 Angstrom resolution crystal structure of Cvx is presented. In common with other members of this snake-venom protein family, Cvx is an alphabeta- heterodimer and conforms to the C- type lectin- fold topology. Comparison with other family members allows a set of Cvx residues that form a concave surface to be putatively implicated in GPVI binding. Unlike other family members, with the exception of flavocetin- A ( FL- A), Cvx forms an (alphabeta)(4) tetramer. This oligomeric structure is consistent with Cvx clustering GPVI molecules on the surface of platelets and as a result promoting signal transduction activity. The Cvx structure and the location of the putative binding sites suggest a model for this multimeric signalling assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) 1b-V-IX receptor complex, GPV1 and integrin alpha(2)beta(1)-These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alphaIIbbeta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPV1 and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective - Platelet stimulation by collagen and collagen-related peptides (CRPs) is associated with activation of protein tyrosine kinases. In the present study, we investigated the role of Src family tyrosine kinases in the initial adhesion events of human platelets to collagen and cross-linked CRP. Methods and Results - Under arterial flow conditions, a glycoprotein VI - specific substrate, cross-linked CRP, caused rapid (<2 second) platelet retention and protein tyrosine phosphorylation that were markedly decreased by the Src family kinase inhibitor pyrozolopyrimidine (PP2) or by aggregation inhibitor GRGDSP. CRP-induced platelet retention was transient, and 90% of single platelets or aggregates detached within seconds. PP2, although having no effect on RGD peptide-binding to CRP, completely blocked aggregation and tyrosine phosphorylation of Syk and phospholipase Cγ2 (PLCγ2). In contrast, PP2 weakly (<30%) suppressed firm adhesion to collagen mediated primarily by the alpha(2)beta(1) integrin. Although PP2 prevented activation of Syk and PLCgamma2 in collagen-adherent platelets, tyrosine phosphorylation of several unidentified protein bands persisted, as did autophosphorylation of pp125(FAK). Conclusions - These findings indicate that activation of Src-tyrosine kinases Syk and PLCgamma2 is not required for the initial stable attachment of human platelets to collagen and for FAK autophosphorylation. However, Src-tyrosine kinases are critical for glycoprotein VI - mediated signaling leading to platelet aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we report on the interaction of KLVFF-PEG with fibrinogen (Fbg) in neutral aqueous solutions at 20 degrees C, for particular ratios of KLVFF-PEG to Fbg concentration, Delta = CKLVFF-PEG/C-Fbg- Our results show the formation of Fbg/KLVFF-PEG complexes for Delta > 0, such that there is not an extended network of complexes throughout the solution. In addition, cleaved protein and Fbg dimers are identified in the solution for Delta >= 0. There is a dramatic change in the tertiary structure of the Fbg upon KLVFF-PEG binding, although the KLVFF-PEG binds to the Fbg without affecting the secondary structure elements of the glycoprotein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Quercetin, a flavonoid present in the human diet, which is found in high levels in onions, apples, tea and wine, has been shown previously to inhibit platelet aggregation and signaling in vitro. Consequently, it has been proposed that quercetin may contribute to the protective effects against cardiovascular disease of a diet rich in fruit and vegetables. Objectives: A pilot human dietary intervention study was designed to investigate the relationship between the ingestion of dietary quercetin and platelet function. Methods: Human subjects ingested either 150 mg or 300 mg quercetin-4'-O-beta-D-glucoside Supplement to determine the systemic availability of quercetin. Platelets were isolated from subjects to analyse collagen-stimulated cell signaling and aggregation. Results: Plasma quercetin concentrations peaked at 4.66 mum (+/-0.77) and 9.72mum (+/-1.38) 30min after ingestion of 150-mg and 300-mg doses of quercefin-4'-O-beta-D-glucoside, respectively, demonstrating that quercetin was bioavailable, with plasma concentrations attained in the range known to affect platelet function in vitro. Platelet aggregation was inhibited 30 and 120 min after ingestion of both doses of quercetin-4'-O-beta-D-glucoside. Correspondingly, collagen-stimulated tyrosine phosphorylation of total platelet proteins was inhibited. This was accorripanied by reduced tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2, components of the platelet glycoprotein VI collagen receptor signaling pathway. Conclusions: This study provides new evidence of the relatively high systemic availability of quercetin in the form of quercetin-4'-O-beta-D-glucoside by supplementation, and implicates quercetin as a dietary inhibitor of platelet cell signaling and thrombus formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To explore a possible correlation between endothelin 1 (ET-1), the most potent endothelium-derived contracting factor that modulates vascular smooth muscle tone, and arterial disease in patients with the antiphospholipid syndrome (APS). Methods Plasma levels of ET-1 were measured in APS patients with (n = 16) and without (n = 11) arterial thrombosis and in non-APS patients with arterial thrombosis (n = 9). In addition, steady-state prepro-ET-1 messenger RNA (mRNA) levels were determined in endothelial cells treated with a range of human monoclonal anticardiolipin antibodies (aCL) (as anti-β2-glycoprotein I antibodies) by semiquantitative 32P-dCTP-labeled reverse transcription-polymerase chain reaction. Results Compared with healthy controls, markedly increased plasma levels of ET-1 were found in APS patients with arterial thrombosis (2.00 ± 0.87 versus 0.96 ± 0.37 pg/ml; P = 0.0001) but not in other groups. Three human monoclonal aCL induced prepro-ET-1 mRNA levels significantly more than did control monoclonal antibody lacking aCL activity. Conclusion Plasma ET-1 levels correlated significantly with a history of arterial thrombosis in patients with APS. Prepro-ET-1 mRNA was induced by human monoclonal aCL in the in vitro experimental system. The induction of ET-1 by antiphospholipid antibodies might contribute to increased arterial tone, leading to vasospasm and, ultimately, to arterial occlusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Importance of biomarker discovery in men’s cancer diagnosis and prognosis Each year around 10,000 men in the UK die as a result of prostate cancer (PCa) making it the 3rd most common cancer behind lung and breast cancer; worldwide more than 670,000 men are diagnosed every year with the disease [1]. Current methods of diagnosis of PCa mainly rely on the detection of elevated prostate-specific antigen (PSA) levels in serum and/or physical examination by a doctor for the detection of an abnormal prostate. PSA is a glycoprotein produced almost exclusively by the epithelial cells of the prostate gland [2]. Its role is not fully understood, although it is known that it forms part of the ejaculate and its function is to solubilise the sperm to give them the mobility to swim. Raised PSA levels in serum are thought to be due to both an increased production of PSA from the proliferated prostate cells, and a diminished architecture of affected cells, allowing an easier distribution of PSA into the wider circulatory system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE: In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS: Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS: PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS: PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.