943 resultados para Nonlinear vibration isolation system
Resumo:
We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF.
Systems of coupled clamped beams equations with full nonlinear terms: Existence and location results
Resumo:
This work gives sufficient conditions for the solvability of the fourth order coupled system┊
u⁽⁴⁾(t)=f(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t))
v⁽⁴⁾(t)=h(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t))
with f,h: [0,1]×ℝ⁸→ℝ some L¹- Carathéodory functions, and the boundary conditions
{
Resumo:
This thesis argues the attitude control problem of nanosatellites, which has been a challenging issue over the years for the scientific community and still constitutes an active area of research. The interest is increasing as more than 70% of future satellite launches are nanosatellites. Therefore, new challenges appear with the miniaturisation of the subsystems and improvements must be reached. In this framework, the aim of this thesis is to develop novel control approaches for three-axis stabilisation of nanosatellites equipped with magnetorquers and reaction wheels, to improve the performance of the existent control strategies and demonstrate the stability of the system. In particular, this thesis is focused on the development of non-linear control techniques to stabilise full-actuated nanosatellites, and in the case of underactuation, in which the number of control variables is less than the degrees of freedom of the system. The main contributions are, for the first control strategy proposed, to demonstrate global asymptotic stability derived from control laws that stabilise the system in a target frame, a fixed direction of the orbit frame. Simulation results show good performance, also in presence of disturbances, and a theoretical selection of the magnetic control gain is given. The second control approach presents instead, a novel stable control methodology for three-axis stabilisation in underactuated conditions. The control scheme consists of the dynamical implementation of an attitude manoeuvre planning by means of a switching control logic. A detailed numerical analysis of the control law gains and the effect on the convergence time, total integrated and maximum torque is presented demonstrating the good performance and robustness also in the presence of disturbances.
Resumo:
Psychological characterisation of the somatosensory system often focusses on minimal units of perception, such as detection, localisation, and magnitude estimation of single events. Research on how multiple simultaneous stimuli are aggregated to create integrated, synthetic experiences is rarer. This thesis aims to shed a light on the mechanisms underlying the integration of multiple simultaneous stimuli, within and between different sub-modalities of the somatosensory system. First, we investigated the ability of healthy individuals to perceive the total intensity of composite somatosensory patterns. We found that the overall intensity of tactile, cold, or warm patterns was systematically overestimated when the multiple simultaneous stimuli had different intensities. Perception of somatosensory totals was biased towards the most salient element in the pattern. Furthermore, we demonstrated that peak-biased aggregation is a genuine perceptual phenomenon which does not rely on the discrimination of the parts, but is rather based on the salience of each stimulus. Next, we studied a classical thermal illusion to assess participants’ ability to localise thermal stimuli delivered on the fingers either in isolation, or in uniform and non-uniform patterns. We found that despite a surprisingly high accuracy in reporting the location of a single stimulus, when participants were presented with non-uniform patterns, their ability to identify the thermal state of a specific finger was completely abolished. Lastly, we investigated the perceptual and neural correlates of thermo-nociceptive interaction during the presentation of multiple thermal stimuli. We found that inhibition of pain by warmth was independent from both the position and the number of thermal stimuli administered. Our results suggest that nonlinear integration of multiple stimuli, within and between somatosensory sub-modalities, may be an efficient way by which the somatosensory system synthesises the complexity of reality, providing an extended and coherent perception of the world, in spite of its deep bandwidth limitations.
Linear and nonlinear thermal instability of Newtonian and non-Newtonian fluid saturated porous media
Resumo:
The present work aims to investigate the influence of different aspects, such as non-standard steady solutions, complex fluid rheologies and non-standard porous-channel geometries, on the stability of a Darcy-Bénard system. In order to do so, both linear and nonlinear stability theories are considered. A linear analysis focuses on studying the dynamics of the single disturbance wave present in the system, while its nonlinear counterpart takes into consideration the interactions among the single modes. The scope of the stability analysis is to obtain information regarding the transition from an equilibrium solution to another one, and also information regarding the transition nature and the emergent solution after the transition. The disturbance governing equations are solved analytically, whenever possible, and numerical by considering different approaches. Among other important results, it is found that a cylinder cross-section does not affect the thermal instability threshold, but just the linear pattern selection for dilatant and pseudoplastic fluid saturated porous media. A new rheological model is proposed as a solution for singular issues involving the power-law model. Also, a generalised class of one parameter basic solutions is proposed as an alternative description of the isoflux Darcy--Bénard problem. Its stability is investigated.
Resumo:
Over the last century, mathematical optimization has become a prominent tool for decision making. Its systematic application in practical fields such as economics, logistics or defense led to the development of algorithmic methods with ever increasing efficiency. Indeed, for a variety of real-world problems, finding an optimal decision among a set of (implicitly or explicitly) predefined alternatives has become conceivable in reasonable time. In the last decades, however, the research community raised more and more attention to the role of uncertainty in the optimization process. In particular, one may question the notion of optimality, and even feasibility, when studying decision problems with unknown or imprecise input parameters. This concern is even more critical in a world becoming more and more complex —by which we intend, interconnected —where each individual variation inside a system inevitably causes other variations in the system itself. In this dissertation, we study a class of optimization problems which suffer from imprecise input data and feature a two-stage decision process, i.e., where decisions are made in a sequential order —called stages —and where unknown parameters are revealed throughout the stages. The applications of such problems are plethora in practical fields such as, e.g., facility location problems with uncertain demands, transportation problems with uncertain costs or scheduling under uncertain processing times. The uncertainty is dealt with a robust optimization (RO) viewpoint (also known as "worst-case perspective") and we present original contributions to the RO literature on both the theoretical and practical side.
Resumo:
Racing motorcycles are prone to an unstable oscillatory motion of the swingarm and rear wheel, commonly known as ‘chatter’. This vibration mode typically has a frequency of 17 Hz to 22 Hz and typically occurs during heavy braking manoeuvres. The appearance of chatter can cause reduced rider confidence, and therefore lead to longer lap times during races and the increased risk of crashing. This thesis looks to further the understanding of this mode. It includes the development of a simplified model to explore the effects roll angle and lateral dynamics have on the chatter mode using linear analysis. The mechanisms of instability and parameter sensitivities are also examined. The effects of the nonlinearities present in the minimal model equations of motion are examined, including the identification of limit cycles and their stability, inspecting individual nonlinear terms and their effects, and introducing tyre relaxation and determining the effect it has on the dynamics. Finally, an exploratory study of the mid-corner region of a typical racing manoeuvre is performed in hopes to better understand if any high frequency tyre induced instabilities like chatter can occur.
Resumo:
Researchers have engrossed fractional-order modeling because of its ability to capture phenomena that are nearly impossible to describe owing to its long-term memory and inherited properties. Motivated by the research in fractional modeling, a fractional-order prototype for a flexible satellite whose dynamics are governed by fractional differential equations is proposed for the first time. These relations are derived using fractional attitude dynamic description of rigid body simultaneously coupled with the fractional Lagrange equation that governs the vibration of the appendages. Two attitude controls are designed in the presence of the faults and uncertainties of the system. The first is the fractional-order feedback linearization controller, in which the stability of the internal dynamics of the system is proved. The second is the fractional-order sliding mode control, whose asymptotic stability is demonstrated using the quadratic Lyapunov function. Several nonlinear simulations are implemented to analyze the performance of the proposed controllers.
Resumo:
As predictive maintenance becomes more and more relevant in industrial environment, the possible range of applications for this maintenance strategy grows. The progresses in components technology and their reduction in price, together with the late years' advances in machine learning and in computational power, are making the implementation of predictive maintenance possible in plants where it would have previously been unreasonably costly. This is leading major pharmaceutical industries to explore the possibility of the application of condition monitoring systems on progressively less and less critical equipment. The focus of this thesis is on the implementation of a system to gather vibrational data from the motors installed in a pre-existing machine using off-the-shelf components. The final goal for the system is to provide the necessary vibration data, in the form of frequency spectra, to a machine learning system developed by IMA Digital, which will be leveraging such data to predict possible upcoming faults and to give the final client all the information necessary to plan maintenance activity according to the estimated machine condition.
Resumo:
Industrial companies, particularly those with induction motors and gearboxes as integral components of their systems, are utilizing Condition Monitoring (CM) systems more frequently in order to discover the need for maintenance in advance, as traditional maintenance only performs tasks when a failure has been identified. Utilizing a CM system is essential to boost productivity and minimize long-term failures that result in financial loss. The more exact and practical the CM system, the better the data analysis, which adds to a more precise maintenance forecast. This thesis project is a cooperation with PEI Vibration Monitoring s.r.l. to design and construct a low-cost vibrational condition monitoring system to check the health of induction motors and gearboxes automatically. Moreover, according to the company's request, such a system should have specs comparable to NI 9234, one of the company's standard Data Acquisition (DAQ) boards, but at a significantly cheaper price. Additionally, PEI VM Company has supplied all hardware and electronic components. The suggested CM system is capable of highprecision autonomous monitoring of induction motors and gearboxes, and it consists of a Raspberry Pi 3B and MCC 172 DAQ board.
Resumo:
Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.
Resumo:
To compare time and risk to biochemical recurrence (BR) after radical prostatectomy of two chronologically different groups of patients using the standard and the modified Gleason system (MGS). Cohort 1 comprised biopsies of 197 patients graded according to the standard Gleason system (SGS) in the period 1997/2004, and cohort 2, 176 biopsies graded according to the modified system in the period 2005/2011. Time to BR was analyzed with the Kaplan-Meier product-limit analysis and prediction of shorter time to recurrence using univariate and multivariate Cox proportional hazards model. Patients in cohort 2 reflected time-related changes: striking increase in clinical stage T1c, systematic use of extended biopsies, and lower percentage of total length of cancer in millimeter in all cores. The MGS used in cohort 2 showed fewer biopsies with Gleason score ≤ 6 and more biopsies of the intermediate Gleason score 7. Time to BR using the Kaplan-Meier curves showed statistical significance using the MGS in cohort 2, but not the SGS in cohort 1. Only the MGS predicted shorter time to BR on univariate analysis and on multivariate analysis was an independent predictor. The results favor that the 2005 International Society of Urological Pathology modified system is a refinement of the Gleason grading and valuable for contemporary clinical practice.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.