995 resultados para Nonlinear oscillations
Resumo:
A description is given of experimental investigations in which free electromechanical oscillations are obtained for the first time in ferroelectric liquid crystals. © 1997 American Institute of Physics.
Resumo:
The results of the high-quality nonlinear pulse compression of gain-switched laser diode pulses using a two-cascade compression scheme are presented. The scheme incorporates a dispersive delay line and a nonlinear pulse compressor based on a dispersion-imbalanced fiber loop mirror (DILM). It is demonstrated that the DILM can be also used for the pulse compression with a compression ratio of 10 or higher.
Resumo:
It is shown experimentally that an elastic mechanical stress in a crystal structure is a necessary factor for the appearance of free oscillations of the director of a ferroelectric liquid crystal. Such a mechanical stress arises as a result of internal textural perturbations in the presence of regions with a different orientation of the director or is produced by external pressure applied to one of the cell plates in the appropriate direction. © 1999 American Institute of Physics.
Resumo:
Experimental observations of the time-dependent mechanical responses of collagenous tissues have demonstrated behavior that deviates from standard treatments of linear or quasi-linear viscoelasticity. In particular, time-dependent deformation can be strongly coupled to strain level, and strain-rate independence can be observed under monotonic loading, even for a tissue with dramatic stress relaxation. It was postulated that this nonlinearity is fundamentally associated with gradual recruitment of individual collagen fibrils during applied mechanical loading. Based on previously observed experimental results for the time-dependent response of collagenous soft tissues, a model is developed to describe the mechanical behavior of these tissues under uniaxial loading. Tissue stresses, under applied strain-controlled loading, are assumed to be a sum of elastic and viscoelastic stress contributions. The relative contributions of elastic and viscoelastic stresses is assumed to vary with strain level, leading to strain- and time-dependent mechanical behavior. The model formulation is examined under conditions of monotonic loading at varying constant strain rates and stress-relaxation at different applied strain levels. The model is compared with experimental data for a membranous biological soft tissue, the amniotic sac, and is found to agree well with experimental results. The limiting behavior of the novel model, at large strains relative to the collagen recruitment, is consistent with the quasi-linear viscoelastic approach. © 2006 Materials Research Society.
Resumo:
In this paper we examine triggering in a simple linearly-stable thermoacoustic system using techniques from flow instability and optimal control. Firstly, for a noiseless system, we find the initial states that have highest energy growth over given times and from given energies. Secondly, by varying the initial energy, we find the lowest energy that just triggers to a stable periodic solution. We show that the corresponding initial state grows first towards an unstable periodic solution and, from there, to the stable periodic solution. This exploits linear transient growth, which arises due to nonnormality in the governing equations and is directly analogous to bypass transition to turbulence. Thirdly, we introduce noise that has similar spectral characteristics to this initial state. We show that, when triggering from low noise levels, the system grows to high amplitude self-sustained oscillations by first growing towards the unstable periodic solution of the noiseless system. This helps to explain the experimental observation that linearly-stable systems can trigger to self-sustained oscillations even with low background noise. © 2010 by University of Cambridge. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The global stability of confined uniform density wakes is studied numerically, using two-dimensional linear global modes and nonlinear direct numerical simulations. The wake inflow velocity is varied between different amounts of co-flow (base bleed). In accordance with previous studies, we find that the frequencies of both the most unstable linear and the saturated nonlinear global mode increase with confinement. For wake Reynolds number Re = 100 we find the confinement to be stabilising, decreasing the growth rate of the linear and the saturation amplitude of the nonlinear modes. The dampening effect is connected to the streamwise development of the base flow, and decreases for more parallel flows at higher Re. The linear analysis reveals that the critical wake velocities are almost identical for unconfined and confined wakes at Re ≈ 400. Further, the results are compared with literature data for an inviscid parallel wake. The confined wake is found to be more stable than its inviscid counterpart, whereas the unconfined wake is more unstable than the inviscid wake. The main reason for both is the base flow development. A detailed comparison of the linear and nonlinear results reveals that the most unstable linear global mode gives in all cases an excellent prediction of the initial nonlinear behaviour and therefore the stability boundary. However, the nonlinear saturated state is different, mainly for higher Re. For Re = 100, the saturated frequency differs less than 5% from the linear frequency, and trends regarding confinement observed in the linear analysis are confirmed.
Resumo:
Frequency entrainment and nonlinear synchronization are commonly observed between simple oscillatory systems, but their occurrence and behavior in continuum fluid systems are much less well understood. Motivated by possible applications to geophysical fluid systems, such as in atmospheric circulation and climate dynamics, we have carried out an experimental study of the interaction of fully developed baroclinic instability in a differentially heated, rotating fluid annulus with an externally imposed periodic modulation of the thermal boundary conditions. In quasiperiodic and chaotic amplitude-modulated traveling wave regimes, the results demonstrate a strong interaction between the natural periodic modulation of the wave amplitude and the externally imposed forcing. This leads to partial or complete phase synchronization. Synchronization effects were observed even with very weak amplitudes of forcing, and were found with both 1:1 and 1:2 frequency ratios between forcing and natural oscillations.
Resumo:
Dynamic nonlinear absorption of composite-type single-wall carbon nanotube saturable absorbers is characterized using both femtosecond and picosecond pump pulses. Results are compared with numerical simulations based on two commonly used saturable absorber models. © 2010 Optical Society of America.
Resumo:
Synchronization is now well established as representing coherent behaviour between two or more otherwise autonomous nonlinear systems subject to some degree of coupling. Such behaviour has mainly been studied to date, however, in relatively low-dimensional discrete systems or networks. But the possibility of similar kinds of behaviour in continuous or extended spatiotemporal systems has many potential practical implications, especially in various areas of geophysics. We review here a range of cyclically varying phenomena within the Earth's climate system for which there may be some evidence or indication of the possibility of synchronized behaviour, albeit perhaps imperfect or highly intermittent. The exploitation of this approach is still at a relatively early stage within climate science and dynamics, in which the climate system is regarded as a hierarchy of many coupled sub-systems with complex nonlinear feedbacks and forcings. The possibility of synchronization between climate oscillations (global or local) and a predictable external forcing raises important questions of how models of such phenomena can be validated and verified, since the resulting response may be relatively insensitive to the details of the model being synchronized. The use of laboratory analogues may therefore have an important role to play in the study of natural systems that can only be observed and for which controlled experiments are impossible. We go on to demonstrate that synchronization can be observed in the laboratory, even in weakly coupled fluid dynamical systems that may serve as direct analogues of the behaviour of major components of the Earth's climate system. The potential implications and observability of these effects in the long-term climate variability of the Earth is further discussed. © 2010 Springer-Verlag Berlin Heidelberg.