927 resultados para Nonlinear damping
Resumo:
The purpose of this study was to compare linear and nonlinear programming models for feed formulation, for maximum profit, considering the real variation in the prices of the corn, soybean meal and broilers during the period from January of 2008 to October of 2009, in the São Paulo State, Brazil. For the nonlinear formulation model, it was considered the following scenarios of prices: a) the minimum broiler price and the maximum prices of the corn and soybean meal during the period, b) the mean prices of the broiler, corn and soybean meal in the period and c) the maximum broiler price and the minimum prices of the corn and soybean meal, in the considered period; while for the linear formulation model, it was considered just the prices of the corn and the soybean. It was used the Practical Program for Feed Formulation 2.0 for the diets establishment. A total of 300 Cobb male chicks were randomly assigned to the 4 dietary treatments with 5 replicate pens of 15 chicks each. The birds were fed with a starter diet until 21 d and a grower diet from 22 to 42 d of age, and they had ad libitum access to feed and water, on floor with wood shavings as litter. The broilers were raised in an environmentally-controlled house. Body weight, body weight gain, feed intake, feed conversion ratio and profitability (related to the prices variation of the broilers and ingredients) were obtained at 42 d of age. It was found that the broilers fed with the diet formulated with the linear model presented the lowest feed intake and feed conversion ratio as compared with the broilers fed with diets from nonlinear formulation models. There were no significant differences in body weight and body weight gain among the treatments. Nevertheless, the profitabilities of the diets from the nonlinear model were significantly higher than that one from the linear formulation model, when the corn and soybean meal prices were near or below their average values for the studied period, for any broiler chicken price.
Resumo:
The modeling technique is simple, useful and practical to calculate optimum nutrient density to maximize profit margins, using nonlinear programming by predictive broiler performance. To demonstrate the influence of the broiler price could interact with nutrient density, the experiment aimed to define the quadratic equations for consumption and weight gain, based on modeling, to be applied to nonlinear programming, according to sex (male and female) in the starter (1 to 21 days), grower (22 to 42 days) and finisher phases (43 to 56 days). The experimental design was a randomized, totaling 6 treatments [energy levels of 2800, 2900, 3000, 3100, 3200 and 3300kcal AME/kg with constant nutrient : AME (Apparent Metabolizable Energy)] with 4 replicates and 10 birds per plot, using the program free download PPFR Excel workbook for feed formulation (http://www.foa.unesp.br/downloads/file_detalhes.asp?CatCod=4&SubCatCod=138&FileCod=1677). Data from this trial confirmed that there was a significant relationship between feed intake and total energy consumption of the diet, in which feed intake was increased or decreased simply to keep the amount of energy, with a constant rate of nutrient : AME. Therefore, the data support that if the essential dietary nutrients are kept in proportion to the energy density of the diet, according to the appropriate requirements (male / female) of broilers, the weight and feed conversion are significantly (P<0.05) favored by increasing the energy density of the diet. Thus, it enables the application of models for maximum profit (nonlinear formulation), to estimate the proportion of weight gain most appropriate according to the price paid by the market.
Resumo:
The Frequency Modulated - Atomic Force Microscope (FM-AFM) is apowerful tool to perform surface investigation with true atomic resolution. The controlsystem of the FM-AFM must keep constant both the frequency and amplitude ofoscillation of the microcantilever during the scanning process of the sample. However,tip and sample interaction forces cause modulations in the microcantilever motion.A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback signalto the FM-AFM control system. The PLL performance is vital to the FM-AFMperformace since the image information is in the modulated microcantilever motion.Nevertheless, little attention is drawn to PLL performance in the FM-AFM literature.Here, the FM-AFM control system is simulated, comparing the performancefor di erent PLL designs.
Resumo:
This paper shows the application of a hysteretic model for the Magnetorheological Damper (MRD) placed in the plunge degree-of-freedom of aeroelastic model of a wing. This hysteretic MRD model was developed by the researchers of the French Aerospace Lab. (ONERA) and describe, with a very good precision, the hysteretic behavior of the MRD. The aeroelastic model used in this paper do not have structural nonlinearities, the only nonlinearities showed in the model, are in the unsteady flow equations and are the same proposed by Theodorsen and Wagner in their unsteady aerodynamics theory; and the nonlinearity introduced by the hysteretic model used. The main objective of this paper is show the mathematical modeling of the problem and the equations that describes the aeroelastic response of our problem; and the gain obtained with the introduction of this hysteretic model in the equations with respect to other models that do not show the this behavior, through of pictures that represents the time response and Phase diagrams. These pictures are obtained using flow velocities before and after the flutter velocity. Finally, an open-loop control was made to show the effect of the MRD in the aeroelastic behavior.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.
Resumo:
We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.
Resumo:
A robotic control design considering all the inherent nonlinearities of the robot engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case 1: For control positioning, it is only used motor voltage; Case 2: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Resumo:
The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we use the 0-1 test to identify chaotic motions. The main objective of this study is to eliminate chaotic behavior of the chassis and reduce its vibrations. To accomplish this, a semi-active vehicle suspension control system, using magneto-rheological dampers, is proposed. The proposed semi-active control strategy consists of two nonlinear control laws: a feedforward control, and a feedback control. They are obtained by considering the SDRE (State Dependent Riccati Equation) control, where the control parameter is the voltage applied to the coils of the magneto-rheological dampers. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing, therefore, passenger comfort.
Resumo:
This study focuses on analysing the effects of nonlinear torsional stiffness on the dynam-ics of a slender elastic beam under torsional oscillations, which can be subject to helical buckling.The helical buckling of an elastic beam confined in a cylinder is relevant to many applications. Someexamples include oil drilling, medical cateters and even the conformation and functioning of DNAmolecules. A recent study showed that the formation of the helical configuration is a result of onlythe torsional load, confirming that there is a different path to helical buckling which is not related tothe sinusoidal buckling, stressing the importance of the geometrical behaviour of the beam. A lowdimensional model of an elastic beam under torsional oscillations is used to analyse its dynamical be-haviour with different stiffness characteristics, which are present before and after the helical buckling.Hardening and softening characteristics are present, as the effects of torsion and bending are coupled.With the use of numerical algorithms applied to nonlinear dynamics, such as bifurcation diagramsand basins of attraction, it is shown that the nonlinear stiffness can shift the bifurcations and inducechanges in the stability of the desirable and undesirable solutions. Therefore, the proper modellingof these stiffness nonlinearities seems to be important for a better understanding of the dynamicalbehaviour of such beams.
Resumo:
In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Spatially, temporally, and angularly resolved collinear collective Thomson scattering was used to diagnose the excitation and damping of a relativistic-phase-velocity self-modulated laser wakefield. The excitation of the electron plasma wave was observed to be driven by Raman-type instabilities. The damping is believed to originate from both electron beam loading and modulational instability. The collective Thomson scattering of a probe pulse from the ion acoustic waves, resulting from modulational instability, allows us to measure the temporal evolution of the plasma temperature. The latter was found to be consistent with the damping of the electron plasma wave.
Resumo:
In this paper, we propose an extension of the invariance principle for nonlinear switched systems under dwell-time switched solutions. This extension allows the derivative of an auxiliary function V, also called a Lyapunov-like function, along the solutions of the switched system to be positive on some sets. The results of this paper are useful to estimate attractors of nonlinear switched systems and corresponding basins of attraction. Uniform estimates of attractors and basin of attractions with respect to time-invariant uncertain parameters are also obtained. Results for a common Lyapunov-like function and multiple Lyapunov-like functions are given. Illustrative examples show the potential of the theoretical results in providing information on the asymptotic behavior of nonlinear dynamical switched systems. (C) 2012 Elsevier B.V. All rights reserved.