956 resultados para Non-model organism
Resumo:
This Thesis discusses the phenomenology of the dynamics of open quantum systems marked by non-Markovian memory effects. Non-Markovian open quantum systems are the focal point of a flurry of recent research aiming to answer, e.g., the following questions: What is the characteristic trait of non-Markovian dynamical processes that discriminates it from forgetful Markovian dynamics? What is the microscopic origin of memory in quantum dynamics, and how can it be controlled? Does the existence of memory effects open new avenues and enable accomplishments that cannot be achieved with Markovian processes? These questions are addressed in the publications forming the core of this Thesis with case studies of both prototypical and more exotic models of open quantum systems. In the first part of the Thesis several ways of characterizing and quantifying non-Markovian phenomena are introduced. Their differences are then explored using a driven, dissipative qubit model. The second part of the Thesis focuses on the dynamics of a purely dephasing qubit model, which is used to unveil the origin of non-Markovianity for a wide class of dynamical models. The emergence of memory is shown to be strongly intertwined with the structure of the spectral density function, as further demonstrated in a physical realization of the dephasing model using ultracold quantum gases. Finally, as an application of memory effects, it is shown that non- Markovian dynamical processes facilitate a novel phenomenon of timeinvariant discord, where the total quantum correlations of a system are frozen to their initial value. Non-Markovianity can also be exploited in the detection of phase transitions using quantum information probes, as shown using the physically interesting models of the Ising chain in a transverse field and a Coulomb chain undergoing a structural phase transition.
Resumo:
Biotechnology has been recognized as the key strategic technology for industrial growth. The industry is heavily dependent on basic research. Finland continues to rank in the top 10 of Europe's most innovative countries in terms of tax-policy, education system, infrastructure and the number of patents issued. Regardless of the excellent statistical results, the output of this innovativeness is below acceptable. Research on the issues hindering the output creation has already been done and the identifiable weaknesses in the Finland's National Innovation system are the non-existent growth of entrepreneurship and the missing internationalization. Finland is proven to have all the enablers of the innovation policy tools, but is lacking the incentives and rewards to push the enablers, such as knowledge and human capital, forward. Science Parks are the biggest operator in research institutes in the Finnish Science and Technology system. They exist with the purpose of speeding up the commercialization process of biotechnology innovations which usually include technological uncertainty, technical inexperience, business inexperience and high technology cost. Innovation management only internally is a rather historic approach, current trend drives towards open innovation model with strong triple helix linkages. The evident problems in the innovation management within the biotechnology industry are examined through a case study approach including analysis of the semi-structured interviews which included biotechnology and business expertise from Turku School of Economics. The results from the interviews supported the theoretical implications as well as conclusions derived from the pilot survey, which focused on the companies inside Turku Science Park network. One major issue that the Finland's National innovation system is struggling with is the fact that it is technology driven, not business pulled. Another problem is the university evaluation scale which focuses more on number of graduates and short-term factors, when it should put more emphasis on the cooperation success in the long-term, such as the triple helix connections with interaction and knowledge distribution. The results of this thesis indicated that there is indeed requirement for some structural changes in the Finland's National innovation system and innovation policy in order to generate successful biotechnology companies and innovation output. There is lack of joint output and scales of success, lack of people with experience, lack of language skills, lack of business knowledge and lack of growth companies.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
This paper presents a study on the dynamics of the rattling problem in gearboxes under non-ideal excitation. The subject has being analyzed by a number of authors such as Karagiannis and Pfeiffer (1991), for the ideal excitation case. An interesting model of the same problem by Moon (1992) has been recently used by Souza and Caldas (1999) to detect chaotic behavior. We consider two spur gears with different diameters and gaps between the teeth. Suppose the motion of one gear to be given while the motion of the other is governed by its dynamics. In the ideal case, the driving wheel is supposed to undergo a sinusoidal motion with given constant amplitude and frequency. In this paper, we consider the motion to be a function of the system response and a limited energy source is adopted. Thus an extra degree of freedom is introduced in the problem. The equations of motion are obtained via a Lagrangian approach with some assumed characteristic torque curves. Next, extensive numerical integration is used to detect some interesting geometrical aspects of regular and irregular motions of the system response.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.
Resumo:
An augmented reality (AR) device must know observer’s location and orientation, i.e. observer’s pose, to be able to correctly register the virtual content to observer’s view. One possible way to determine and continuously follow-up the pose is model-based visual tracking. It supposes that a 3D model of the surroundings is known and that there is a video camera that is fixed to the device. The pose is tracked by comparing the video camera image to the model. Each new pose estimate is usually based on the previous estimate. However, the first estimate must be found out without a prior estimate, i.e. the tracking must be initialized, which in practice means that some model features must be identified from the image and matched to model features. This is known in literature as model-to-image registration problem or simultaneous pose and correspondence problem. This report reviews visual tracking initialization methods that are suitable for visual tracking in ship building environment when the ship CAD model is available. The environment is complex, which makes the initialization non-trivial. The report has been done as part of MARIN project.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight) 24 h before the experiment. Static pressure-volume (PV) curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA), sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation
Resumo:
Hepatitis viruses belong to different families and have in common a striking hepatotropism and restrictions for propagation in cell culture. The transmissibility of hepatitis is in great part limited to non-human primates. Enterically transmitted hepatitis viruses (hepatitis A virus and hepatitis E virus) can induce hepatitis in a number of Old World and New World monkey species, while the host range of non-human primates susceptible to hepatitis viruses transmitted by the parenteral route (hepatitis B virus, hepatitis C virus and hepatitis delta virus) is restricted to few species of Old World monkeys, especially the chimpanzee. Experimental studies on non-human primates have provided an invaluable source of information regarding the biology and pathogenesis of these viruses, and represent a still indispensable tool for vaccine and drug testing.
Resumo:
Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC) can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.
Resumo:
Electroacupuncture has been proposed to be a low cost and practical method that allows effective pain management with minimal collateral effects. In this study we have examined the effect of electroacupuncture against the hyperalgesia developed in a model of post-incisional pain in rats. A 1-cm longitudinal incision was made through the skin and fascia of the plantar region of the animal hind paw. Mechanical hyperalgesia in the incision was evaluated 135 min after the surgery with von Frey filaments. The tension threshold was reduced from 75 g (upper limit of the test) to 1.36 ± 0.36 g (mean ± SEM) in control rats. It is shown that a 15-min period of electroacupuncture applied 120 min after surgery to the Zusanli (ST36) and Sanyinjiao (SP6) points, but not to non-acupoints, produces a significant and long-lasting reduction of the mechanical hyperalgesia induced by the surgical incision of the plantar surface of the ipsilateral hind paw. The tension threshold was reduced from 75 to 27.6 ± 4.2 g in animals soon after the end of electroacupuncture. The mechanical threshold in this group was about 64% less than in control. Electroacupuncture was ineffective in rats treated 10 min earlier with naloxone (1 mg/kg, ip), thus confirming the involvement of opioid mechanisms in the antinociceptive effects of such procedure. The results indicate that post-incisional pain is a useful model for studying the anti-hyperalgesic properties of electroacupuncture in laboratory animals.
Resumo:
Peripheral axonal regeneration was investigated in adult male mice of the C57BL/6J (C), BALB/cJ (B) and A/J (A) strains and in their F1 descendants using a predegenerated nerve transplantation model. Four types of transplants were performed: 1) isotransplants between animals of the C, B and A strains; 2) donors of the C strain and recipients of the C x B and C x A breeding; 3) donors of the B strain and recipients of the C x B breeding, and 4) donors of the A strain and recipients of the C x A breeding. Donors had the left sciatic nerve transected and two weeks later a segment of the distal stump was transplanted into the recipient. Four weeks after transplantation the regenerated nerves were used to determine the total number of regenerated myelinated fibers (TMF), diameter of myelinated fibers (FD) and myelin thickness (MT). The highest TMF values were obtained in the groups where C57BL/6J mice were the donors (C to F1 (C x B) = 4658 ± 304; C to F1 (C x A) = 3899 ± 198). Also, A/J grafts led to a significantly higher TMF (A to F1 (C x A) = 3933 ± 565). Additionally, isotransplant experiments showed that when the nerve is previously degenerated, C57BL/6J mice display the largest number of myelinated fibers (C to C = 3136 ± 287; B to B = 2759 ± 170, and A to A = 2835 ± 239). We also observed that when C57BL/6J was the graft donor, FD was the highest and MT did not differ significantly when compared with the other groups. These morphometric results reinforce the idea that Schwann cells and the nerve environment of C57BL/6J provide enough support to the regenerative process. In this respect, the present results support the hypothesis that the non-neuronal cells, mainly Schwann cells, present in the sciatic nerve of C57BL/6J mice are not the main limiting factor responsible for low axonal regeneration.
Resumo:
Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.
Resumo:
Pancreatic ß cell function and insulin sensitivity, analyzed by the homeostasis model assessment, before and after 24 weeks of insulin therapy were studied and correlated with the presence of autoantibodies against ß cells (islet cell and anti-glutamic acid decarboxylase antibodies), in a group of 18 Brazilian lean adult non-insulin-dependent diabetes mellitus (NIDDM) patients with oral hypoglycemic agent failure (OHAF). Median fasting plasma glucose before and after insulin treatment was 19.1 and 8.5 mmol/l, respectively (P < 0.001); median HbA1c was 11.7% before vs 7.2% after insulin treatment (P < 0.001). Forty-four percent of the patients were positive (Ab+) to at least one autoantibody. Fasting C-peptide levels were lower in Ab+ than Ab- patients, both before (Ab+: 0.16 ± 0.09 vs Ab-: 0.41 ± 0.35 nmol/l, P < 0.003) and after insulin treatment (Ab+: 0.22 ± 0.13 vs Ab-: 0.44 ± 0.24 nmol/l, P < 0.03). Improvement of Hß was seen in Ab- (median before: 7.3 vs after insulin therapy: 33.4%, P = 0.003) but not in Ab+ patients (median before: 6.6 vs after insulin therapy: 20.9%). These results show that the OHAF observed in the 18 NIDDM patients studied was due mainly to two major causes: autoantibodies and ß cell desensitization. Autoantibodies against ß cells could account for 44% of OHAF, but Ab- patients may still present ß cell function recovery, mainly after a period of ß cell rest with insulin therapy. However, the effects of ß cell function recovery on the restoration of the response to oral hypoglycemic agents need to be determined.